
Symmetric Key Cryptography
Lecture 8

Summary

SIM-CCA
secure if:

∀

∃ s.t.

∀

Key/
Enc

Key/
Dec

Env

Send Recv

Env
REAL

IDEAL

Replay
Filter

SIM-CCA Security
Symmetric-Key Encryption

REAL ≈ IDEAL

Authentication not required. i.e., Adversary
allowed to send own messages (possibly “error”)

RE
CA

LL

Encryption &
Authentication

CPA secure encryption: Block-cipher/CTR mode construction

MAC: from a PRF or Block-Cipher

CCA secure encryption: From CPA secure encryption and MAC.
Encrypt-then-MAC. (Gives authentication also.)

SKE can be entirely based on Block-Ciphers

A tool that can make things faster: Hash functions (later)

RE
CA

LL

Message Authentication
Codes

A single short key shared by Alice and Bob

Can sign any (polynomial) number of
messages

A triple (KeyGen, MAC, Verify)

Correctness: For all K from KeyGen, and all
messages M, VerifyK(M,MACK(M))=1

Security: probability that an adversary can
produce (M,s) s.t. VerifyK(M,s)=1 is negligible
unless Alice produced an output s=MACK(M)

Mi

si =

MACK(Mi)

(M,s)

VerK(M,s)

Advantage

 = Pr[VerK(M,s)=1 and

 (M,s) ∉ {(Mi,si)}]

MACK VerK

RE
CA

LL

MAC from PRF

PRF is a MAC!

MACK(M) := FK(M) where F is a PRF

VerK(M,S) := 1 iff S=FK(M)

Output length of FK should be big enough

If an adversary forges MAC with probability εMAC,
then can break PRF with advantage O(εMAC — 2-m(k))
(m(k) being the output length of the PRF) [How?]

If random function R used as MAC, then
probability of forgery, εMAC* = 2-m(k)

When Each Message is a Single Block

FK

M FK(M)

Recall: Advantage in
breaking a PRF F =
diff in prob test has
of outputting 1, when

given F vs. truly
random R

RE
CA

LL

MAC from PRF

CBC-MAC

For fixed number of blocks

Else length-extension attacks possible  
(by extending a previously signed message)

Many ways to handle variable number of blocks

e.g., EMAC, CMAC, …

Later, HMAC: MAC from a “hash function” (instead of a PRF)

For multi-block messages

RE
CA

LL

m1 m2 mt

FK FK FK

⊕ ⊕

T

...

Authenticated Encryption
Encryption + authentication (implies CCA secure encryption)

Generic composition: encrypt (CPA), then MAC

Needs two keys and two passes

AE aims to do this more efficiently

Several constructions based on block-ciphers (modes of
operation) provably secure modeling block-cipher as PRP

One pass: IAPM, OCB, ... [patented]

Two pass: CCM, GCM, SIV, ... [included in NIST standards]

AE with Associated Data: Allows unencrypted (but
authenticated) parts of the plaintext, for headers etc.

MAC-then-encrypt is not
necessarily CCA-secure

SKE in Practice

Stream Ciphers

A key should be used for only a single stream

RC4, eSTREAM portfolio, ...

In practice, stream ciphers take a key and an “IV”  
(initialization vector) as inputs

Heuristic goal: behave somewhat like a PRF (instead of a
PRG) so that it can be used for multi-message encryption

But often breaks if used this way

NIST Standard: For multi-message encryption, use a block-
cipher in CTR mode

Also used to
denote the random
nonce chosen for
encryption using a
block-cipher

Block Ciphers

DES, 3DES, Blowfish, AES, ...

Heuristic constructions

Permutations that can be inverted with the key

Speed (hardware/software) is of the essence

But should withstand known attacks

As a PRP (or at least, against key recovery)

f2

＋

Feistel Network

f1

＋

Building a permutation from a (block) function

Let f: {0,1}m → {0,1}m be an arbitrary function

Ff: {0,1}2m→{0,1}2m defined as Ff(x,y) = (y, x⊕f(y))

Ff is a permutation (Why?)

Can invert (How?)

Given functions f1,...,ft can build a t-layer Feistel
network Ff1...ft

Still a permutation from {0,1}2m to {0,1}2m

Luby-Rackoff: A 3-layer Feistel network with PRFs  
(with independent seeds) as round functions is a PRP.  
A 4-layer Feistel of PRFs gives a strong PRP.

Fewer layers do not suffice! [Exercise]

1

DES Block Cipher
Data Encryption Standard (DES), Triple-DES, DES-X

DES uses a 16-layer Feistel network (and a few other steps)

The round functions are not PRFs, but ad hoc

“Confuse and diffuse”

Defined for fixed key/block lengths (56 bits and 64 bits);
key is used to generate subkeys for round functions

DES’s key length too short

Can now mount brute force key-recovery attacks (e.g. using $10K
hardware, running for under a week, in 2006; now, in under a
day)

DES-X: extra keys to pad input and output

Triple DES: 3 successive applications of DES (or DES-1) with 3 keys

NIST Standard. 1976

AES Block Cipher
Advanced Encryption Standard (AES)

AES-128, AES-192, AES-256 (3 key sizes; block size = 128 bits)

Very efficient in software implementations (unlike DES)

Uses “Substitute-and-Permute” instead of Feistel networks

Has some algebraic structure

Operations in a vector space over the field GF(28)

The algebraic structure may lead to “attacks”? Not yet.

Some implementations may lead to side-channel attacks (e.g.
cache-timing attacks)

Widely considered secure, but no “simple” hardness assumption
known to imply any sort of security for AES

NIST Standard. 2001

By Jeff Moser (http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html)

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Cryptanalysis
Attacking stream ciphers and block ciphers

Typically for key recovery

Brute force cryptanalysis, using specialized hardware

e.g. Attack on DES in 1998

Several other analytical techniques to speed up attacks

Sometimes “theoretical”: on weakened (“reduced round”)
constructions, showing improvement over brute-force attack

Meet-in-the-middle, linear cryptanalysis, differential
cryptanalysis, impossible differential cryptanalysis,
boomerang attack, integral cryptanalysis, cube attack, ...

SKE today
SKE in IPsec, TLS etc. mainly based on AES block-ciphers

AES-128, AES-192, AES-256

A recommended choice: AES Counter-mode + CMAC (or HMAC),
encrypt-then-MAC.

Gives CCA security, and provides authentication

(Standards don’t all follow this choice, but still secure)

Older components/modes still in use

Supported by many standards for legacy purposes

In many applications (sometimes with modifications)

e.g. RC4 still used in BitTorrent

