Public-Key Cryptography

Lecture 10
DDH Assumption
El Gamal Encryption
Public-Key Encryption from Trapdoor OWP

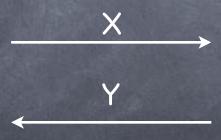
RECALL

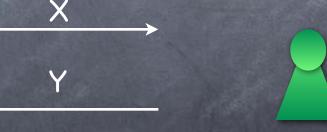
Diffie-Hellman Key-exchange

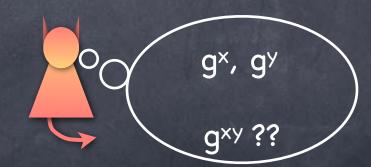
• "Secure" if $(g^x, g^y, g^{xy}) \approx (g^x, g^y, g^r)$

Random $x \in \{0,...,|G|-1\}$ $X=q^{\times}$

Output Y×







Random $y \in \{0,...,|G|-1\}$

Output Xy

RECALL

Discrete Log Assumption Repeated squaring

Raise(x;G,q)

- Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by g: $DL_q(X) := unique \times such that X = g^{\times} (x \in \{0,1,...,|G|-1\})$
- In a (computationally efficient) group, given integer x and the standard representation of a group element g, can efficiently find the standard representation of X=g× (How?)
 - But given X and g, may not be easy to find x (depending on G)
 - DLA: Every PPT Adv has negligible success probability in the DL Expt: $(G,g)\leftarrow GroupGen; X\leftarrow G; Adv(G,g,X)\rightarrow z; g^z=X?$ OWF collection:
- If DLA broken, then Diffie-Hellman key-exchange broken
 - Eve gets x, y from gx, gy (sometimes) and can compute gxy herself A "key-recovery" attack
 - Note: could potentially break pseudorandomness without breaking DLA too

DDH) Assumption

- At least as strong as Discrete Log Assumption (DLA)
 - DLA: Raise(x; G,g) = $(g^x; G,g)$ is a OWF collection
 - If DDH assumption holds, then DLA holds [Why?]
- But possible that DLA holds and DDH assumption doesn't
 - e.g.: DLA is widely assumed to hold in \mathbb{Z}_p^* (p prime), but DDH assumption doesn't hold there! (coming up)
- Today: a candidate group for DDH

A Candidate DDH Group

- Consider $ℚℝ_P^*$: subgroup of Quadratic Residues ("even power" elements) of $ℤ_P^*$
- Easy to check if an element is a QR or not: check if raising to |G|/2 gives 1 (identity element)
- 9 1 7 9 5 6 2 4 3
- o DDH does not hold in \mathbb{Z}_P^* : g^{xy} is a QR w/ prob. 3/4; g^z is QR only w/ prob. 1/2.
- How about in QRp*?
 - \circ Could check if cubic residue in \mathbb{Z}_P^* !

DDH Candidate:

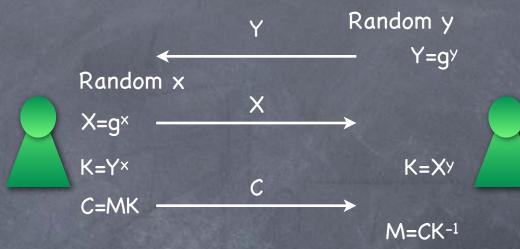
QRp*

where P is a random k-bit safe-prime

- But if (P-1) is not divisible by 3, all elements in \mathbb{Z}_P^* are cubic residues! (P-1)/2 called a Sophie Germain prime
- "Safe" if (P-1)/2 is also prime: P called a safe-prime

El Gamal Encryption

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange



- Then use it as a one-time pad
- Bob's "message" in the keyexchange is his PK
- Alice's message in the keyexchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen:
$$PK=(G,g,Y)$$
, $SK=(G,g,y)$
 $Enc_{(G,g,Y)}(M) = (X=g^x, C=MY^x)$

$$Dec_{(G,q,y)}(X,C) = CX^{-y}$$

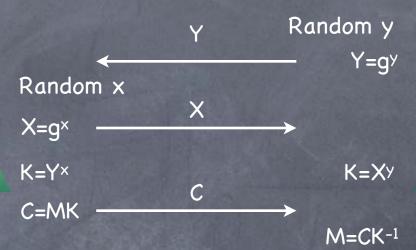
- KeyGen uses GroupGen to get (G,g)
- x, y uniform from Z_{|G|}
- Message encoded into group element, and decoded

Security of El Gamal

- El Gamal IND-CPA secure if DDH holds (for the collection of groups used)
 - Construct a DDH adversary A* given an IND-CPA adversary A
 - - But sets $PK=(G,g,g^y)$ and $Enc(M_b)=(g^x,M_bg^z)$
 - Outputs 1 if experiment outputs 1 (i.e. if b=b')
 - When z=random, A* outputs 1 with probability = 1/2
 - When z=xy, exactly IND-CPA experiment: A^* outputs 1 with probability = 1/2 + advantage of A.

Abstracting El Gamal

- Trapdoor PRG:
 - KeyGen: a pair (PK,SK)
 - Three functions: Gpk(.) (a PRG) and Tpk(.) (make trapdoor info) and Rsk(.) (opening the trapdoor)
 - $G_{PK}(x)$ is pseudorandom even given $T_{PK}(x)$ and PK
 - \circ (PK,T_{PK}(x),G_{PK}(x)) ≈ (PK,T_{PK}(x),r)
 - $T_{PK}(x)$ hides $G_{PK}(x)$. SK opens it.
 - \circ R_{SK}(T_{PK}(x)) = G_{PK}(x)
- Enough for an IND-CPA secure PKE scheme (e.g., Security of El Gamal)



KeyGen:
$$PK=(G,g,Y)$$
, $SK=(G,g,y)$
 $Enc_{(G,g,Y)}(M) = (X=g^x, C=MY^x)$
 $Dec_{(G,g,y)}(X,C) = CX^{-y}$

KeyGen: (PK,SK) $Enc_{PK}(M) = (X=T_{PK}(x), C=M.G_{PK}(x))$ $Dec_{SK}(X,C) = C/R_{SK}(T_{PK}(x))$

Trapdoor PRG from Generic Assumption?

PRG constructed from OWP (or OWF)

 Allows us to instantiate the construction with several candidates

Is there a similar construction for TPRG from OWP?

 $(PK,T_{PK}(x),G_{PK}(x)) \approx (PK,T_{PK}(x),r)$

KeyGen

PK

Z

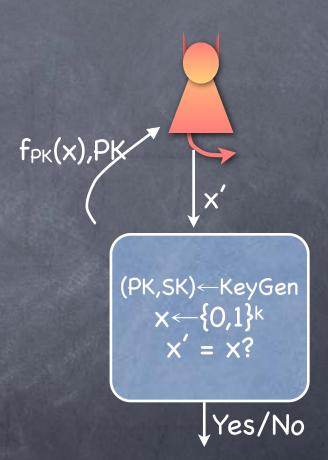
SK

R

- Trapdoor property seems fundamentally different: generic
 OWP does not suffice
- Will start with "Trapdoor OWP"

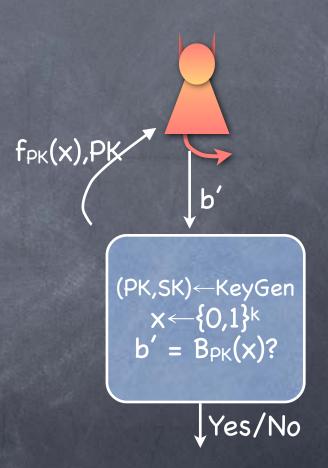
Trapdoor OWP

- (KeyGen,f,f') (all PPT) is a trapdoor oneway permutation if
 - For all (PK,SK) ← KeyGen
 - fpk a permutation
 - f'sk is the inverse of fpk
 - For all PPT adversary, probability of success in the Trapdoor OWP experiment is negligible



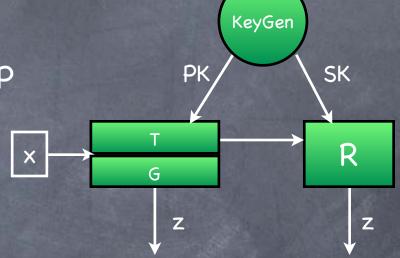
Trapdoor OWP

- (KeyGen,f,f') (all PPT) is a trapdoor oneway permutation if
 - For all (PK,SK) ← KeyGen
 - fpk a permutation
 - f'sk is the inverse of fpk
 - For all PPT adversary, probability of success in the Trapdoor OWP experiment is negligible
 - Hardcore predicate:
 - B_{PK} s.t. (PK, $f_{PK}(x)$, $B_{PK}(x)$) \approx (PK, $f_{PK}(x)$, r)

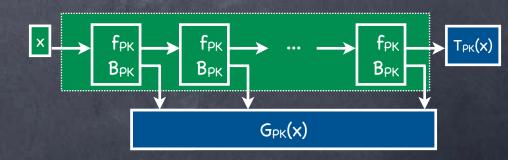


Trapdoor PRG from Trapdoor OWP

- Same construction as PRG from OWP
- One bit Trapdoor PRG
 - KeyGen same as Trapdoor OWP's KeyGen
 - $G_{PK}(x) := B_{PK}(x).$ $T_{PK}(x) := f_{PK}(x).$ $R_{sK}(y) := G_{PK}(f'_{SK}(y))$
 - (SK assumed to contain PK)
- More generally, last permutation output serves as T_{PK}



```
(PK,T_{PK}(x),G_{PK}(x)) \approx (PK,T_{PK}(x),r)
(PK,f_{PK}(x),B_{PK}(x)) \approx (PK,f_{PK}(x),r)
```



Candidate Trapdoor OWPs

- From some (candidate) OWP collections, with index as public-key
- Recall candidate OWF collections
 - Rabin OWF: $f_{Rabin}(x; N) = x^2 \mod N$, where N = PQ, and P, Q are k-bit primes (and x uniform from $\{0...N-1\}$)
 - Fact: $f_{Rabin}(.; N)$ is a permutation among quadratic residues, when P, Q are = 3 (mod 4)
 - Fact: Can invert f_{Rabin}(.; N) given factorization of N
 - PRIME RSA Function: $f_{RSA}(x; N,e) = x^e \mod N$ where N=PQ, P,Q k-bit primes, e s.t. $gcd(e,\phi(N)) = 1$ (and x uniform from $\{0...N-1\}$)
 - Fact: f_{RSA}(.; N,e) is a permutation
 - Fact: While picking (N,e), can also pick d s.t. xed = x

lext time