Public-Key Cryptography

Lecture 10
DDH Assumption
El Gamal Encryption
Public-Key Encryption from Trapdoor OWP

y Diffie-Hellman

Key-exchange

@ “Secure” if (gx,9v,9%) = (g*,9%.g")

Random xe {0,..,|G|-1} Random ye {0,..,|G|-1}
X:gx X Y:gy
>
A Y 4
<€
Output Yx Output Xy

Repeated
squaring

Discrete Log Assumption

@ Discrete Log (w.r.t g) in a (multiplicative) cyclic group G gene
by g: DLy(X) := unique x such that X = g* (x € {0,1,...,1G|-1})

@ In a (computationally efficient) group, given integer x and the
standard representation of a group element g, can efficiently find
the standard representation of X=gx (How?)

@ But given X and g, may not be easy to find x (depending on G)

@ DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)<—GroupGen; X<G; Adv(G,g,X)—z; g2=X? }

~ OWF collection:

@ If DLA broken, then Diffie-Hellman key-exchange broken Rf?:i’ffég))

@ Eve gets x, y from g%, g¥ (sometimes) and can compute g/ herself

@ A “key-recovery” attack

@ Note: could potentially break pseudorandomness without breaking
DLA foo

Decisional Diffie-Hellman
(DDH) Assumption

@ g%, 97, 9)}G.g)—GroupGen; xy—Tlell = ¥, §¥, 9")1(G.g9)—GroupGen; x,y.rTIG
@ At least as strong as Discrete Log Assumption (DLA)

@ DLA: Raise(x; G,g) = (g%; G,g) is a OWF collection

@ If DDH assumption holds, then DLA holds [\Why?]
@ But possible that DLA holds and DDH assumption doesnt

@ e.g.: DLA is widely assumed to hold in Z," (p prime), but DDH
assumption doesnt hold there! (coming up)

@ Today: a candidate group for DDH

A Candidate DDH Group

@ Consider QRp" : subgroup of Quadra’rlc Residues

(“even power” elements) of Z

@ Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

@ DDH does not hold in Zp" : g*¥ is a QR w/ prob. 3/4;

P —

g? is QR only w/ prob. 1/2. S o
@ How about in QRp*? | QRp
where P is a random
@ Could check if cubic residue in Zp! k-bit safe-prime

@ But if (P-1) is not divisible by 3, all elements in Z

are cubic residues! (P-1)/2 called a Sophie Germain prime)

@ "Safe” if (P-1)/2 is also prime: P called a safe-prime

El Gamal Encryption

Random vy
< Y:gy
@ Based on DH key-exchange Random x
X
. W X=g* < w
@ All.ce, Bob generate a key e KXy
using DH key-exchange i / 5
M=CK-!

@ Then use it as a one-time pad

KeyGen: PK=(G,q,Y), SK=(G,g,y)
Enc(G,g,Y)(M) = (X=gx, C=N\Yx)
Dec(G,gy)(X,C) = CX~

@ Bobs “message” in the key-
exchange is his PK

@ Alices message in the key-
exchange and the ciphertext of |® Key@en uses GroupGen fo gef (Gg)
® X, Yy uniform from Zg

the one-time Pad 1-Ogeﬂ“er form ® Message encoded into group element, and
a single ciphertext decoded

Security of El Gamal

@ E|l Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A* given an IND-CPA adversary A

o A(G,g; g¢,9%,9?) (where (G,g) < GroupGen, X,y random and
z=xy or random) plays the IND-CPA experiment with A:

@ But sets PK=(G,g,g9¥) and Enc(My)=(g*,Msg?)
@ Outputs 1 if experiment outputs 1 (i.e. if b=b’)
@ When z=random, A* outputs 1 with probability = 1/2

@ When z=xy, exactly IND-CPA experiment: A* outputs 1 with
probability = 1/2 + advantage of A.

Abstracting El Gamal

@ Trapdoor PRG: v Random v
< Y=qY
@ KeyGen: a pair (PK,SK) Random x : :

@ Three functions: Gpk(.) (a PRG) SRS 5
and Tek(.) (make trapdoor info) K=Y a K=X

C=MK >

and Rsk(.) (opening the trapdoor) L

@ Gpk(x) is pseudorandom even

given Te(x) and PK KeyGen: PK=(G,g,Y), SK=(G,g.y)

Encgy)(M) = (X=g%, C=MYx)

@ (PK,Tpk(x),Gek(X)) = (PK,Tex(x),r) Dec(sgy)(X.C) = CX

@ Tek(x) hides Gpk(x). SK opens it.
o Rex(Tex(x)) SEGEUE) KeyGen: (PK,SK)

E M) = (X=Tpk(x), C=M.G
@ Enough for an IND-CPA secure PKE nepdiilisgnsTox(x) er(x))
scheme (e.g., Security of El Gamal) Decsk(X,C) = C/Rsk(Tex(x))

Trapdoor PRG from
Generic Assumpfioﬁ

KeyGen

@ PRG constructed from OWP (or OWF)

PK SK
@ Allows us to instantiate the
e gty T R
—

construction with several

candidates
y4 y4
@ Is there a similar construction for l l

B e (PK, Tex(x),Gox(x) = (PK,Tox(x),1)
@ Trapdoor property seems

fundamentally different: generic
OWP does not suffice

@ Will start with “Trapdoor OWP”

Trapdoor OWP

o (KeyGen,f,f’) (all PPT) is a trapdoor one- ‘
way permutation if FPK(X)?/
@ For all (PK,SK) <KeyGen lx'
o f tati 3 R
pk @ permutation A i Can
@ f'sk is the inverse of fpx ><<7{0,13"
X' = X7
@ For all PPT adversary, probability of ¢ i

success in the Trapdoor OWP lYes/No
experiment is negligible

Trapdoor OWP

o (KeyGen,f,f’) (all PPT) is a trapdoor one- ‘
way permutation if FPK(X)?/
@ For all (PK,SK) <KeyGen lb'
o f tati 3 R
pk @ permutation ARy Can
@ f's is the inverse of fpx x<—{0,1}
b’ = Bpk(x)?
@ For all PPT adversary, probability of ¢ i

success in the Trapdoor OWP lYes/No
experiment is negligible

@ Hardcore predicate:

@ Bpk S.t. (PK,fpk(x),Bek(x)) = (PK,fek(x),r)

Trapdoor PRG from
Trapdoor OWP S

KeyGen

@ Same construction as PRG from OWP PK./ :SK
T ——

@ One bit Trapdoor PRG

@ KeyGen same as Trapdoor OWPS
KeyGen l z lz
@ Gpk(x) := Bpk(x). Tex(x) := fex(x). (PK,Tex(x),Gex(x)) = (PK, Tex(x).r)
Rsk(y) := Gpk(f'sk(y)) (PK,fex(x).Bex(x)) = (PK, fox(x),r)
@ (SK assumed to contain PK) TN BN N - B X e
@ More generally, last permutation = L= =

output serves as Tpx Gor(x)

Candidate Trapdoor OWPs

@ From some (candidate) OWP collections, with index as public-key
@ Recall candidate OWF collections

@ Rabin OWF: frain(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0...N-1})

@ Fact: fravin(.; N) is a permutation among quadratic residues,
when P, Q are = 3 (mod 4)
@ Fact: Can invert frapin(.; N) given factorization of N

@ RSA function: frsa(x; N,e) = x¢ mod N where N=PQ, PQ k-bit
primes, e s.t. gcd(e,©(N)) = 1 (and x uniform from {0...N-1})

@ Fact: frsa(.; N,e) is a permutation

@ Fact: While picking (N,e), can also pick d s.t. xed = x

