Public-Key Cryptography

Lecture 11
Some Trapdoor OWP Candidates
Chinese Remainder Theorem



@ CPA secure PKE from Trapdoor PRG
@ PRG family with a (PK,SK). PK specifies the family member.

CPA-secure PKE for
Trapdoor OWP

@ Can encapsulate the seed for the PRG such that:

@ PRG output remains pseudorandom even given PK and

encapsulated seed

@ Can recover PRG output from encapsulated seed and SK

@ El Gamal: encapsulated seed = g%, PRG oufput = Yx

@ Trapdoor PRG from Trapdoor OWP
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Candidate Trapdoor OWPs

@ Two candidates using composite moduli

@ RSA function: frsa(x; N,e) = xe mod N where N=PQ, PQ k-bit
primes, e s.t. gcd(e,©(N)) = 1 (and x uniform from {0...N-1})

@ Fact: frsa(.; N,e) is a permutation
@ Fact: While picking (N,e), can also pick d s.t. xed = x

@ Rabin OWF: frabin(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0...N-1})

@ Fact: fravin(.; N) is a permutation among quadratic residues,
when P, Q are = 3 (mod 4)
@ Fact: Can invert frabin(.; N) given factorization of N



AN

@ Group operation: “multiplication modulo N”
@ Has identity, is associative

@ Group elements: all numbers (mod N) which have a
multiplicative inverse modulo N

o e.g.: Zs" has elements {1,5}, Z7* has {1,2,3,4,5,6}

@ a has a multiplicative inverse modulo N
@ < 3 integers b, ¢ s.t. ab = 1+cN

Extended

Euclidean algorithm to find (b,d)
given (a,N). Used to efficiently invert
elements in ZN"

@ < gcd(a,N)=1
@ (=) gcd(a,N) | (ab-cN)
@ (<) from Euclids algorithm: 3 b, d s.t. gcd(a,N) = ab+dN
o | Z\*| = #integers in [1,N-1] co-prime with N = ©(N)
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4o, P prime

Recall Zp*

| Zp*| =: o(P) = P-1 (all of them co-prime with P)
Cyclic: Isomorphic to Zp.

Discrete Log assumed to be hard

Quadratic Residues form a subgroup @QRp"

o QRp"is a candidate group for DDH assumption
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e.g. le* = {1,2,4,7,8,11,13,14}

@ ¢(15) = 8

AN, N=PQ, two primes

A

Also works with
P, Q co-primes

Group operation and inverse efficiently computable

Cyclic?

a No! In 45, 24 = 42 = 74 = 84 =112=134 =142 =1
(i.e., each genera’res at most 4 elements, out of 8)

“Product of two cycles”: Z3* and Z

@ Chinese Remainder Theorem




Chinese Remainder Theorem

45 43 ds
0 0 0
@ Consider mapping elements in Z;s (all 15 of 1 1 1
them) to Z3 and Zs 2 2 2
3 0 3
@ a+~ (a mod 3, a mod 5) 4 ] 4
@ CRT says that the pair (a mod 3, a mod 5) 2 e O
uniquely determines a (mod 15)! : (1) 12
@ All 15 possible pairs occur, once each 3 2 3
@ In general for N=PQ (P, Q relatively prime), 5 RNONTI 4
a ~ (a mod P, a mod Q) maps the N © : P
elements to the N distinct pairs R
@ In fact extends to product of more than 13 1 3
two (relatively prime) numbers 14 2 4




Chinese Remainder Theorem

and Z?‘ 315 53 g5
N o | o | o
1 1 1
2 2 2
@ CRT representation of Zn: every element of Zy 2 2 2
can be written as a unique element of Zp x Zg : ; g
@ Addition can be done coordinate-wise 6 0 :
1 / 4 7 1 2
@ (a,b) +mod Ny (@',b") = (@ +(mod Py @",b +(mod @) b") 8 2 3
@ CRT: Zy = Zp x Aq (group isomorphism) 9 0 4
: . . , 10 1 0
@ Can efficiently compute the isomorphism (in both n ; 1
directions) if P, Q known [Exercise] T o 5
13 1 3
14 2 A




Chinese Remainder Theorem

and Zy* [ R

@ Elements in ZN" 2 2 2
@ Consider the same mapping into Zp X 4q " : %
@ Multiplication (and identity, and inverse)
also coordinate-wise
B T . 7 2
@ No multiplicative inverse iff (0,b) or (a,0) = >
a Else in Z\™: i.e., (a,b) s.t. ae Zp", be Zq"
o AN = p" x g 11 2 1
a ¢(N) = | Z\'| = (P-1)(@Q-1) (P£Q, primes) 13
14 2 4




RSA Function

@ frsane(X) = x¢ mod N
@ Where N=PQ, and gcd(e,9(N)) = 1 (i.e., e € Zyn)’)
@ frsalNe: 4N — 4N
%] Al’rernafely, FRSA[N e]s AN = AN

@ frsalNe IS a permutation over Zy with a trapdoor (namely (N,d))
@ In fact, there exists d s.t. FRSA[N,d] is the inverse of frsa[Ne]

@ ds.t.ed =1 (mod ¢(N)) = xed = x (mod N)
@ Why? In ZN" because order of ZN" is ¢(N)
a In EN '|'OO, by CRT: EN = Ep X EQ

@ Exponentiation works coordinate-wise
@ ed=1 (mod ¢(N)) = ed=1 (mod ¢(P)) and ed=1 (mod (Q))



RSA Function

@ frsamel(X) = xe mod N
@ Where N=PQ, and gcd(e,9(N)) =1 (i.e., e € Zyn)')
o frsaNe: Zn — AN
a Alternately, frsaine: ZN° — ZN
@ frsalNne IS a permutation over Zy with a trapdoor (namely (N,d))

@ RSA Assumption: frsaine is a OWF collection, when P, Q random
k-bit primes and e < N random number s.t. gcd(e,o(N))=1 (with
inputs uniformly from Zy or Z\°)

@ Alternate version: e=3, P, Q restricted so that gcd(3,¢(N))=1
@ RSA Assumption will be false if one can factorize N
@ Then knows ¢(N) = (P-1)(Q-1) and can find d s.t. ed = 1 (mod ¢(N))

@ Converse not known to hold
@ Trapdoor OWP Candidate



Rabin Function

@ fraviniNi(X) = X2 mod N where N=PQ, PQ primes =3 mod 4
@ Is a candidate OWF collection (indexed by N)

@ Equivalent to the assumption that fmut is a OWF (for the
appropriate distribution)

@ If can factor N, will see how to find square-roots
@ So (PQ) a trapdoor to “invert”
@ Fact: If can take square-root mod N, can factor N

@ Coming up: Is a permutation over @QRy\*, with trapdoor (PQ)



Square-roots in Zp

@ What are the square-roots of x2?
o 1 = #l
@ x2=1 (mod P) & (x+1)(x-1) = 0 (mod P)
< (x+1)=0 or (x-1)=0 (mod P)
[p 's prime i) x=1 (mod P) or x=-1 (mod P)

@ Where -1 = glP-1)/2

@ More generally J/(x2) = +x (because x2=y2 (mod P) & x = #y)

@ -X = -1-%,



Square-roots in 4p

@ What are the square-roots of x2?

o 1 = #l
@ x2=1 (mod P) & (x+1)(x-1) = 0 (mod P)
< (x+1)=0 or (x-1)=0 (mod P)
[p 's prime i) x=1 (mod P) or x=-1 (mod P)

@ Where -1 = glP-1)/2

@ More generally J/(x2) = +x (because x2=y2 (mod P) & x = #y)

@ -X = -1-%,



Square-roots in QRp”

o In Zp" J/(x2) = +x
@ How many square-roots stay in QRp™?

@ Depends on P!
o e.g. QR = {£1,43,+4}

@ 1,3,-4 have 2 square-roots each. But -1,-3,4
have none within QR;5”

@ Since -1 € @3@13*, X € @E@ﬂki -X € @@13*

a -1 € @R iff (P-1)/2 even

a If (P-1)/2 odd, exactly one of *x in @QRp" (for all x)

@ Then, squaring is a permutation in QRp"
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Square-roots in QRp”

In Zp* J(x2) = +x (i.e., x and -1-x )
If (P-1)/2 odd, squaring is a permutation in QRp"

@ (P-1)/2 odd < P = 3 (mod 4)

But easy to compute both ways!

a In fact Jz = zP+)/4 ¢ @QRp”" (because (P+1)/2 even)

Rabin function defined in @Ry™ and relies on keeping
the factorization of N=PQ hidden



QRN

@ What do elements in @QR\* look like, for N=PQ?
@ By CRT, can write a € ZN" as (X,y) € Zp"x4qQ"
@ CRT representation of a2 is (x2,y2) € QRp*'xQRy"
o QR = QR x QR
o If both PQ=3 (mod 4), then squaring is a permutation in QR\"
a J(x2,y2) = (+x,+y) in Zp*x4q" but exactly one in QRy*xQR"
@ Can efficiently do this, if can compute (and invert) the
isomorphism from QRy\* to QR'xQRG
@ (PQ) is a trapdoor
@ Without trapdoor, OWF candidate

@ Follows from assuming OWF in Z\", because @QR\™ forms
1/4’rh OF EN*



Rabin Function

@ FRabin[N](X) = X2 mod N

@ Candidate OWF collection, with N=PQ (P,Q random k-bit primes)

o If P Q =3 (mod 4), then in QRY"

@ A permutation
@ Has a trapdoor for inverting (namely (P.Q))

@ Candidate Trapdoor OWP
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Summary

A DLA candidate: Zp*
A DDH candidate: @QRp" where P is a safe prime

Chinese Remainder Theorem

@ AN = 4dp X dg
@ AN = " x Ag"
o QR = QRY" x QRq’

Trapdoor OWP candidates:

@ frsaine = X mod N where N=PQ and gcd(e,p(N))=1
@ Trapdoor: (PQ) — ¢(N) — d=e-! in Zyn

@ fravin[N] = X2 mod N where N=PQ, where PQ =3 (mod 4)
@ Trapdoor: (PQ)

Trapdoor OWP can be used to construct Trapdoor PRG

@ Trapdoor PRG can give IND-CPA secure PKE



