Hash Functions (ctd.)

Lecture 15

y Hash Functions

@ Main syntactic feature: Variable input length to fixed length output
@ Primary requirement: collision-resistance

@ If for all PPT A, Pr(x#y and h(x)=h(y)] is negligible in the

following experiment:
s @ A—(x,y); h<# : Combinatorial Hash Functions

/\f:a}’\@ A—x; h<#; A(h)—Yy : Universal One-Way Hash Functions
N
@ h<—#; A(h)—(x,y) : Collision-Resistant Hash Functions
@ h<—#; Ah—(x,y) : Weak Collision-Resistant Hash Functions
o h<—#; x<—X; A(h,h(x))—Yy : One-Way Hash Functions (x=y OK)
@ h<—#; x<—X; A(h,x)—Yy : SPR Hash Functions
@ Also often required: "unpredictability” iGenem“zes fo vector
spaces [Exercise]
@ Already saw: a 2-UHF (chop(ax+b) over a field)

@ Today: UOWHF and CRHF constructions. Domain Extension.

—

UOWHF

Universal One-Way HF: A—x; h<—#; A(h)—y. h(x)=h(y) w.n.p

Since the hash function is compressing, then there will be
collisions. So a computationally unbounded adversary can win
this game!

Need to rely on computational hardness
UOWHF can be constructed from OWF

Much easier to see OWP = UOWHF

Or, if not unique,
can uniformly

UOWHF from OWP .iv".
@ Fn(x) = h(f(x)), where f is a OWP and h from a)/ﬁl/{/{:amily

@ s.t. h compresses by a bit (i.e., is a 2-40-1 map), and

@ for all z, 2', w, can efficiently solve for h s.t. h(z) = h(z') = w

@ Is a UOWHF: can choose h to force UOWHF adversary to invert f

BreakOWP(z) { Get x < A; Sample random w; Solve h s.t. h(z) = h(f(x)) = w;
Give h to A; Get y < A and output vy; }

@ Only collision (y£x s.t. Fn(x) = Fn(y)) is y=Ff-1(2)

2R i e

Or, if not unique,
can uniformly

UOWHF from OWP| ..iux.
@ Fn(x) = h(f(x)), where f is a OWP and h from a)}{ﬂ/&lmily

@ s.t. h compresses by a bit (i.e., is a 2-40-1 map), and

@ for all z, z', w, can efficiently solve for h s.t. h(z) = h(z') = w

@ Is a UOWHF: can choose h to force UOWHF adversary to invert f

BreakOWP(z) { Get x < A; Sample random w; Solve h s.t. h(z) = h(f(x)) = w;
Give h to A; Get y < A and output vy; }

@ Only collision (y#x s.t. Fn(x) = Fnly)) is y=f-1(2)
@ BreakOWP is efficient as h can be efficiently solved v

@ BreakOWP has same advantage as A has against UOWHF?
Yes, if h is uniform (independent of x) [Why?]

@ h uniform because z, w picked uniformly v

o

CRHF

Collision-Resistant HF: h<=#; A(h)—(x,y). h(x)=h(y) w.n.p
Not known to be possible from OWF/OWP alone

@ “Impossibility” (blackbox-separation) known

Possible from “claw-free pair of permutations”

@ In turn from hardness of discrete-log, factoring, and
from lattice-based assumptions

Also from "homomorphic one-way permutations”, and from
homomorphic encryptions

@ All candidates use mathematical operations that are
considered computationally expensive

CRHF

@ CRHF from discrete log assumption:

@ Suppose G a group of prime order q, where DL is considered
hard (e.g. QR," for p=2q+l a safe prime)

@ hgg2(x1,x2) = giX!g2x2 (in €=) where g1, g2 # 1 (hence generators)
@ A collision: (x1,x2) # (yi,Y2) s.t. hgig2(X1,X2)= hg1,g2(Y1,Y2)

@ Collision = xi#y: and X2#y2 [Why?]

@ Then gz = g1 ®-yD/(x2-y2) (exponents in Zg)

@ i.e., w.r.t. a random base gi, can compute DL of a
random element g.. Breaks DL!

@ Hash halves the size of the input

Domain Extension

@ Full-domain hash: hash arbitrarily long strings to a single
hash value

@ So far, UOWHF/CRHF which have a fixed domain @
@ First, simpler goal: extend to a larger, fixed domain

@ Assume we are given a hash function from two blocks @
to one block (a block being, say, k bits)

@ What if we can compress by only one bit (e.g., our
UOWHF construction)?

@ Can just apply repeatedly to compress by t bits

Domain Extension

@ Can compose hash functions more efficiently,
using a "Merkle tree”

@ Suppose basic hash from {0,1}2k to {0,1}%. A
hash function from {0,1}8 to {0,1} using a

tree of depth 3 /
@ If basic hash from {0,1}2¢ to {0,1}2k-1, Q

first construct new basic hash from
{0,132k to 10,13k, by repeated hashing T

@ Any tree can be used, with consistent I/0 sizes
@ Independent hashes or same hash?

@ Depends!

—O—O/

Domain Extension for CRHF

Same
for x & vy

@ For CRHF, same basic hash used through out
the Merkle tree. Hash description same as
for a single basic hash

@ If a collision ((Xi...Xn), (Y1..¥n)) over all, then
some collision (x’,y’) for basic hash

@ Consider moving a “frontline” from bottom
to top. Look for equality on this front.

@ Collision at some step (different values
ith i+1st): qi
on it front, same on i+1st); gives a S
collision for basic hash for x & vy

@ A*(h): run A(h) to get (X1...Xn), (Yi...¥n). Move
frontline to find (x',y’)

Domain Extension for UOWHF

@ For UOWHF, cant use same basic hash throughout!

@ A‘ has to output an x’ on getting (xi...xn) from A,
before getting h

@ Can guess a random node (i.e., random pair of
frontlines) where collision occurs, but if not a
leaf, cant compute x’ until h is fixed! /
@ Solution: a different h for each level of the @ 7
tree (i.e., no ancestor/successor has same h) 1
@ To compute x': Get (xi...xn) from A. Then pick T T

a random node (say at level i), pick h; for
levels below i, and compute input to the node; let this be x'.

@ On getting h, plug it in as h;, pick h; for remaining levels;
give hs to A and get (yi..yn); compute y* and output it.

UOWHF vs. CRHF

UOWHF has a weaker guarantee than CRHF

UOWHF can be built based on OWF (we saw based on OWP),
where as CRHF "needs stronger assumptions”

@ But “usual” OWF candidates suffice for CRHF too (we saw
construction based on discrete-log)

Domain extension of CRHF is simpler, with no blow-up in the
description size. For UOWHF description increases logarithmically
in the input size

UOWHF theoretically important (based on simpler assumptions,
good if paranoid), but CRHF can substitute for it

Current practice: much less paranoid; faith on efficient, ad hoc
(and unkeyed) constructions (though increasingly under attack)

Domain Extension

@ Full-domain hash: hash arbitrarily long strings to a
single hash value

@ Merkle-Tree construction extends the domain to
any fixed input length

@ Hash the message length (number of blocks) along
with the original hash

@ Collision in the new hash function gives either
collision at the top level, or if not, collision in the
original Merkle tree and for the same message

length

@

Hash Functions in Practice

A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)

Often from a fixed input-length compression function

Merkle-Damgard iterated hash function, MDf:

m; mz

7|]

mi+

gl

o

— Note: Unlike MACs, here

&) e

If f collision resistant then so is MDf (for any 1V)

u

LI_/

T

~

Collision resistance even
with variable input-length.

“length-extension” is OK,
as long as it results in a

different hash value
e ~

If fis not keyed, but
“concretely” collision

resistant, so is MDf

J

@ If f modelled as a Random Oracle, MDf is a “public-use RO."
If f modelled as an “Ideal Cipher;” MDf is "pre-image aware.”

