
Hash Functions (ctd.)
Lecture 15

Main syntactic feature: Variable input length to fixed length output

Primary requirement: collision-resistance

If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the
following experiment:

A→(x,y); h←H : Combinatorial Hash Functions

A→x; h←H; A(h)→y : Universal One-Way Hash Functions

h←H; A(h)→(x,y) : Collision-Resistant Hash Functions

h←H; Ah→(x,y) : Weak Collision-Resistant Hash Functions

h←H; x←X; A(h,h(x))→y : One-Way Hash Functions (x=y OK)

h←H; x←X; A(h,x)→y : SPR Hash Functions

Also often required: “unpredictability”

Already saw: a 2-UHF (chop(ax+b) over a field)

Today: UOWHF and CRHF constructions. Domain Extension.

Hash Functions
Ty

pi
ca

lly

us
ed

RE
CA

LL

Generalizes to vector
spaces [Exercise]

UOWHF

Universal One-Way HF: A→x; h←H; A(h)→y. h(x)=h(y) w.n.p

Since the hash function is compressing, then there will be
collisions. So a computationally unbounded adversary can win
this game!

Need to rely on computational hardness

UOWHF can be constructed from OWF

Much easier to see OWP ⇒ UOWHF

UOWHF from OWP
Fh(x) = h(f(x)), where f is a OWP and h from a UHF family

s.t. h compresses by a bit (i.e., is a 2-to-1 map), and

for all z, z’, w, can efficiently solve for h s.t. h(z) = h(z’) = w

Is a UOWHF: can choose h to force UOWHF adversary to invert f  
 

Only collision (y≠x s.t. Fh(x) = Fh(y)) is y=f-1(z)

Or, if not unique,
can uniformly

sample a  
solution for h

f h
x

y
w

z

 BreakOWP(z) { Get x ← A; Sample random w; Solve h s.t. h(z) = h(f(x)) = w;  
 Give h to A; Get y ← A and output y; }

UOWHF from OWP
Fh(x) = h(f(x)), where f is a OWP and h from a UHF family

s.t. h compresses by a bit (i.e., is a 2-to-1 map), and

for all z, z’, w, can efficiently solve for h s.t. h(z) = h(z’) = w

Is a UOWHF: can choose h to force UOWHF adversary to invert f  
 

Only collision (y≠x s.t. Fh(x) = Fh(y)) is y=f-1(z)

BreakOWP is efficient as h can be efficiently solved ✓

BreakOWP has same advantage as A has against UOWHF?  
Yes, if h is uniform (independent of x) [Why?]

h uniform because z, w picked uniformly ✓

 BreakOWP(z) { Get x ← A; Sample random w; Solve h s.t. h(z) = h(f(x)) = w;  
 Give h to A; Get y ← A and output y; }

Or, if not unique,
can uniformly

sample a  
solution for h

CRHF
Collision-Resistant HF: h←H; A(h)→(x,y). h(x)=h(y) w.n.p

Not known to be possible from OWF/OWP alone

“Impossibility” (blackbox-separation) known

Possible from “claw-free pair of permutations”

In turn from hardness of discrete-log, factoring, and
from lattice-based assumptions

Also from “homomorphic one-way permutations”, and from
homomorphic encryptions

All candidates use mathematical operations that are
considered computationally expensive

CRHF from discrete log assumption:

Suppose G a group of prime order q, where DL is considered

hard (e.g. QRp* for p=2q+1 a safe prime)

hg1,g2(x1,x2) = g1x1g2x2 (in G) where g1, g2 ≠ 1 (hence generators)

A collision: (x1,x2) ≠ (y1,y2) s.t. hg1,g2(x1,x2)= hg1,g2(y1,y2)

Collision ⇒ x1≠y1 and x2≠y2 [Why?]

Then g2 = g1 (x1-y1)/(x2-y2) (exponents in Zq*)

i.e., w.r.t. a random base g1, can compute DL of a
random element g2. Breaks DL!

Hash halves the size of the input

CRHF

Domain Extension

Full-domain hash: hash arbitrarily long strings to a single
hash value

So far, UOWHF/CRHF which have a fixed domain

First, simpler goal: extend to a larger, fixed domain

Assume we are given a hash function from two blocks
to one block (a block being, say, k bits)

What if we can compress by only one bit (e.g., our
UOWHF construction)?

Can just apply repeatedly to compress by t bits
h1

ht-2

ht-1

ht

Can compose hash functions more efficiently,
using a “Merkle tree”

Suppose basic hash from {0,1}2k to {0,1}k. A
hash function from {0,1}8k to {0,1}k using a
tree of depth 3

If basic hash from {0,1}2k to {0,1}2k-1,
first construct new basic hash from  
{0,1}2k to {0,1}k, by repeated hashing

Any tree can be used, with consistent I/O sizes

Independent hashes or same hash?

Depends!

Domain Extension

For CRHF, same basic hash used through out
the Merkle tree. Hash description same as
for a single basic hash

If a collision ((x1...xn), (y1...yn)) over all, then
some collision (x’,y’) for basic hash

Consider moving a “frontline” from bottom
to top. Look for equality on this front.

Collision at some step (different values
on ith front, same on i+1st); gives a
collision for basic hash

A*(h): run A(h) to get (x1...xn), (y1...yn). Move
frontline to find (x’,y’)

Domain Extension for CRHF

Different  
 for x & y

Same 
 for x & y

Domain Extension for UOWHF
For UOWHF, can’t use same basic hash throughout!

A* has to output an x’ on getting (x1...xn) from A,  
before getting h

Can guess a random node (i.e., random pair of  
frontlines) where collision occurs, but if not a  
leaf, can’t compute x’ until h is fixed!

Solution: a different h for each level of the  
tree (i.e., no ancestor/successor has same h)

To compute x’: Get (x1…xn) from A. Then pick  
a random node (say at level i), pick hj for  
levels below i, and compute input to the node; let this be x’.

On getting h, plug it in as hi, pick hj for remaining levels;
give h’s to A and get (y1…yn); compute y’ and output it.

h3

h2 h2

h1 h1 h1 h1

UOWHF vs. CRHF
UOWHF has a weaker guarantee than CRHF

UOWHF can be built based on OWF (we saw based on OWP),
where as CRHF “needs stronger assumptions”

But “usual” OWF candidates suffice for CRHF too (we saw
construction based on discrete-log)

Domain extension of CRHF is simpler, with no blow-up in the
description size. For UOWHF description increases logarithmically
in the input size

UOWHF theoretically important (based on simpler assumptions,
good if paranoid), but CRHF can substitute for it

Current practice: much less paranoid; faith on efficient, ad hoc
(and unkeyed) constructions (though increasingly under attack)

Domain Extension
Full-domain hash: hash arbitrarily long strings to a
single hash value

Merkle-Tree construction extends the domain to
any fixed input length

Hash the message length (number of blocks) along
with the original hash

Collision in the new hash function gives either
collision at the top level, or if not, collision in the
original Merkle tree and for the same message
length

|m|

A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)

Often from a fixed input-length compression function

Merkle-Damgård iterated hash function, MDf:  
 

 

 

 

 

If f collision resistant then so is MDf (for any IV)

If f modelled as a Random Oracle, MDf is a “public-use RO.”  
If f modelled as an “Ideal Cipher,” MDf is “pre-image aware.”

Hash Functions in Practice

m1 m2 mt

T

...f f f f

|m|

IV

Collision resistance even
with variable input-length.  

 

Note: Unlike MACs, here
“length-extension” is OK,
as long as it results in a

different hash value

If f is not keyed, but
“concretely” collision
resistant, so is MDf

