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One-time MAC 
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):


Key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

Negligible probability that Eve can produce a signature on m’≠m


A much more efficient solution, using 2-UHF (and still no 
computational assumptions):


Onetime-MACh(M) = h(M), where h←H, and H is a 2-UHF


Seeing hash of one input gives no information on hash of 
another value
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MAC 
With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)


CBC-MAC: Extends to any fixed length domain


Alternate approach (for fixed length domains):


MACK,h*(M) = PRFK(h(M)) where h←H, and H a 2-UHF
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A proper MAC must work on inputs of variable length


Can make CBC-MAC work securely with variable input-length:

- Derive K as FK’(t), where t is the number of blocks

- Or, Use first block to specify number of blocks

- Or, output not the last tag T, but FK’(T), where K’ an independent key (EMAC)

- Or, XOR last message block with another key K’ (CMAC)


Idea: Leave variable input-lengths to the hash

But combinatorial hash functions worked with a fixed domain

Will use a cryptographic hash function


MAC*K,h(M) = MACK(h(M)) where h←H, and H a weak-CRHF


Weak-CRHFs can be based on OWF. Or, can be more  
efficiently constructed from fixed input-length MACs

MAC 
With Cryptographic Hash Functions

h(M) may be 
revealed 

but only oracle 
access to h



MAC 
With Cryptographic Hash Functions

MAC*K,h(M) = MACK(h(M)) where h←H, and H a weak-CRHF


Weak-CRHFs can be based on OWF. Or, can be more  
efficiently constructed from fixed input-length MACs.


Unlike the domain extension (to fixed length domain) using 2-UHF, 
or CBC-MAC, this doesn’t rely on pseudorandomness of MAC


Works with any one-block MAC (not just a PRF based MAC)


Could avoid “export restrictions” by not being a PRF


Candidate fixed input-length MACs: compression functions (with 
key as IV)


Recall: Compression functions used in Merkle-Damgård 
iterated hash functions



HMAC
HMAC: Hash-based MAC


Essentially built from a compression 
function f


If keys K1, K2 independent (called 
NMAC), then secure MAC if: f is  
a fixed input-length MAC & the 
Merkle-Damgård iterated-hash is a 
weak-CRHF


In HMAC (K1,K2) derived from (K’,K’’), 
in turn heuristically derived from a 
single key K. If f is a (weak kind of) 
PRF K1, K2 can be considered 
independent

K’’

f

IV

T

M

K’

f

IV

m1 mt

...f f f

|m|

f

K2

K1



Hash Not a Random Oracle!
Hash functions are no substitute for RO, especially if built 
using iterated-hashing (even if the compression function was 
to be modeled as an RO)


If H is a Random Oracle, then just H(K||M) will be a MAC


But if H is a Merkle-Damgård iterated-hash function, then 
there is a simple length-extension attack for forgery


(That attack can be fixed by preventing extension: 
prefix-free encoding)


Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned 
out to be flawed too (even before breaking SHA1)



Digital Signatures



Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.  
Security: Same experiment as MAC’s, but adversary given VK


Secure digital signatures using OWF, UOWHF and PRF


Hence, from OWF alone (more efficiently from OWP)


More efficient using CRHF instead of UOWHF


Even more efficient based on (strong) number-theoretic 
assumptions


e.g. Cramer-Shoup Signature based on “Strong RSA 
assumption”


Efficient schemes secure in the Random Oracle Model


e.g. RSA-PSS in RSA Standard PKCS#1



Recall One-time MAC to sign a single n bit message


Shared secret key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n


Signature for m1...mn be (rimi)i=1..n

r10 r20 r30
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One-time Digital Signatures

One-Time Digital Signature: Same signing key and 
signature, but VK= (f(ri0),f(ri1))i=1..n where f is a OWF


Verification applies f to signature elements and 
compares with VK


Security [Exercise]

f(r10) f(r20) f(r30)

f(r11) f(r21) f(r31)

Lamport’s 
One-Time 
Signature



Domain Extension of 
(One-time) Signatures

Lamport’s scheme has a fixed-length message (and SK/VK are 
much longer than the message)


Hash-and-Sign domain extension for signatures


(If applied to one-time signature, still one-time, but with 
variable input-length)


Domain extension using a CRHF (not weak CRHF, unlike for MAC)


Sign*SK,h(M) = SignSK(h(M)) where h←H in both SK*,VK*


Can use UOWHF, with fresh h every time (included in signature)


Sign*SK(M) = ( h,SignSK(h,h(M)) ) where h←H picked by signer


Using a “certificate chain/tree”, can build a full-fledged signature 
scheme starting from one-time signatures (skipped)



More Efficient Signatures
Diffie-Hellman suggestion (heuristic): Sign(M) = f-1(M) where 
(SK,VK) = (f-1,f), a Trapdoor OWP pair. Verify(M,σ) = 1 iff f(σ)=M.


Attack: pick σ, let M=f(σ) (Existential forgery)


Fix: Sign(M) = f-1( Hash(M) )


Secure? Adversary gets to choose M and hence Hash(M); so 
signing oracle gives adversary access to f-1 oracle. But Trapdoor 
OWP gives no guarantees when adversary is given f-1 oracle. 


If Hash(.) modeled as a random oracle then adversary can’t 
choose Hash(M), and effectively doesn’t have access to f-1 
oracle. Then indeed secure


“Standard schemes” like RSA-PSS are based on this



Proving Security in the 
RO Model

To prove: If Trapdoor OWP secure, then Sign(M) = f-1(Hash(M)) is a 
secure digital signature in the RO Model, with Hash modelled as a 
random oracle


Intuition: adversary only sees (x,f-1(x)) where x is random, 
which it could have obtained anyway, by   picking f-1(x) first


Modeling as an RO: RO randomly initialized to a random function H 
from {0,1}* to {0,1}k


Signer and verifier (and forger) get oracle access to H(.)


All probabilities also over the initialization of the RO



Proving Security in ROM
Reduction: If A forges signature (where Sign(M) = f-1(H(M)) with 
(f,f-1) from Trapdoor OWP and H an RO), then  A* that can break 
Trapdoor OWP (i.e., given just f, and a random challenge z, can 
find f-1(z) w.n.n.p). A*(f,z) runs A internally. 


A expects f, access to the RO and a signing oracle f-1(Hash(.)) 
and outputs (M,σ) as forgery
A* can implement RO:  a random 
response to each new query!


A* gets f, but doesn’t have f-1 to sign


But x = H(M) is a random value that 
A* can pick!   


A* picks H(M) as x=f(y) for random y; 
then Sign(M) = f-1(x) = y

(f,z)
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Proving Security in ROM
A* s.t. if A forges signature, then A* can break Trapdoor OWP


A* implements H and Sign: For each new M queried to H 
(including by Sign), A* sets H(M)=f(y) for random y; Sign(M) = y

But A* should force A to invert z


For a random (new) query M (say tth) A* sets H(M)=z

Here queries include the “last 
query” to H, i.e., the one for 
verifying the forgery (may or 
may not be a new query)


Given a bound q on the number of 
queries that A makes to Sign/H, with 
probability ≥ 1/q (and independent of 
A’s view) A* would set H(M)=z, where 
M is the message in the forgery


In that case forgery ⇒ σ = f-1(z) A
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