
Hashes & MAC,

Digital Signatures

Lecture 16

One-time MAC
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

Key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

Negligible probability that Eve can produce a signature on m’≠m

A much more efficient solution, using 2-UHF (and still no
computational assumptions):

Onetime-MACh(M) = h(M), where h←H, and H is a 2-UHF

Seeing hash of one input gives no information on hash of
another value

r10 r20 r30

r11 r21 r31

MAC
With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)

CBC-MAC: Extends to any fixed length domain

Alternate approach (for fixed length domains):

MACK,h*(M) = PRFK(h(M)) where h←H, and H a 2-UHF

m1 m2 mt

FK FK FK

⊕ ⊕

T

...

h(M) not revealed

A proper MAC must work on inputs of variable length

Can make CBC-MAC work securely with variable input-length:

- Derive K as FK’(t), where t is the number of blocks

- Or, Use first block to specify number of blocks

- Or, output not the last tag T, but FK’(T), where K’ an independent key (EMAC)

- Or, XOR last message block with another key K’ (CMAC)

Idea: Leave variable input-lengths to the hash

But combinatorial hash functions worked with a fixed domain

Will use a cryptographic hash function

MAC*K,h(M) = MACK(h(M)) where h←H, and H a weak-CRHF

Weak-CRHFs can be based on OWF. Or, can be more  
efficiently constructed from fixed input-length MACs

MAC
With Cryptographic Hash Functions

h(M) may be
revealed 

but only oracle
access to h

MAC
With Cryptographic Hash Functions

MAC*K,h(M) = MACK(h(M)) where h←H, and H a weak-CRHF

Weak-CRHFs can be based on OWF. Or, can be more  
efficiently constructed from fixed input-length MACs.

Unlike the domain extension (to fixed length domain) using 2-UHF,
or CBC-MAC, this doesn’t rely on pseudorandomness of MAC

Works with any one-block MAC (not just a PRF based MAC)

Could avoid “export restrictions” by not being a PRF

Candidate fixed input-length MACs: compression functions (with
key as IV)

Recall: Compression functions used in Merkle-Damgård
iterated hash functions

HMAC
HMAC: Hash-based MAC

Essentially built from a compression
function f

If keys K1, K2 independent (called
NMAC), then secure MAC if: f is  
a fixed input-length MAC & the
Merkle-Damgård iterated-hash is a
weak-CRHF

In HMAC (K1,K2) derived from (K’,K’’),
in turn heuristically derived from a
single key K. If f is a (weak kind of)
PRF K1, K2 can be considered
independent

K’’

f

IV

T

M

K’

f

IV

m1 mt

...f f f

|m|

f

K2

K1

Hash Not a Random Oracle!
Hash functions are no substitute for RO, especially if built
using iterated-hashing (even if the compression function was
to be modeled as an RO)

If H is a Random Oracle, then just H(K||M) will be a MAC

But if H is a Merkle-Damgård iterated-hash function, then
there is a simple length-extension attack for forgery

(That attack can be fixed by preventing extension:
prefix-free encoding)

Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned
out to be flawed too (even before breaking SHA1)

Digital Signatures

Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.  
Security: Same experiment as MAC’s, but adversary given VK

Secure digital signatures using OWF, UOWHF and PRF

Hence, from OWF alone (more efficiently from OWP)

More efficient using CRHF instead of UOWHF

Even more efficient based on (strong) number-theoretic
assumptions

e.g. Cramer-Shoup Signature based on “Strong RSA
assumption”

Efficient schemes secure in the Random Oracle Model

e.g. RSA-PSS in RSA Standard PKCS#1

Recall One-time MAC to sign a single n bit message

Shared secret key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

r10 r20 r30

r11 r21 r31

One-time Digital Signatures

One-Time Digital Signature: Same signing key and
signature, but VK= (f(ri0),f(ri1))i=1..n where f is a OWF

Verification applies f to signature elements and
compares with VK

Security [Exercise]

f(r10) f(r20) f(r30)

f(r11) f(r21) f(r31)

Lamport’s
One-Time
Signature

Domain Extension of
(One-time) Signatures

Lamport’s scheme has a fixed-length message (and SK/VK are
much longer than the message)

Hash-and-Sign domain extension for signatures

(If applied to one-time signature, still one-time, but with
variable input-length)

Domain extension using a CRHF (not weak CRHF, unlike for MAC)

Sign*SK,h(M) = SignSK(h(M)) where h←H in both SK*,VK*

Can use UOWHF, with fresh h every time (included in signature)

Sign*SK(M) = (h,SignSK(h,h(M))) where h←H picked by signer

Using a “certificate chain/tree”, can build a full-fledged signature
scheme starting from one-time signatures (skipped)

More Efficient Signatures
Diffie-Hellman suggestion (heuristic): Sign(M) = f-1(M) where
(SK,VK) = (f-1,f), a Trapdoor OWP pair. Verify(M,σ) = 1 iff f(σ)=M.

Attack: pick σ, let M=f(σ) (Existential forgery)

Fix: Sign(M) = f-1(Hash(M))

Secure? Adversary gets to choose M and hence Hash(M); so
signing oracle gives adversary access to f-1 oracle. But Trapdoor
OWP gives no guarantees when adversary is given f-1 oracle.

If Hash(.) modeled as a random oracle then adversary can’t
choose Hash(M), and effectively doesn’t have access to f-1
oracle. Then indeed secure

“Standard schemes” like RSA-PSS are based on this

Proving Security in the
RO Model

To prove: If Trapdoor OWP secure, then Sign(M) = f-1(Hash(M)) is a
secure digital signature in the RO Model, with Hash modelled as a
random oracle

Intuition: adversary only sees (x,f-1(x)) where x is random,
which it could have obtained anyway, by picking f-1(x) first

Modeling as an RO: RO randomly initialized to a random function H
from {0,1}* to {0,1}k

Signer and verifier (and forger) get oracle access to H(.)

All probabilities also over the initialization of the RO

Proving Security in ROM
Reduction: If A forges signature (where Sign(M) = f-1(H(M)) with
(f,f-1) from Trapdoor OWP and H an RO), then A* that can break
Trapdoor OWP (i.e., given just f, and a random challenge z, can
find f-1(z) w.n.n.p). A*(f,z) runs A internally.

A expects f, access to the RO and a signing oracle f-1(Hash(.))
and outputs (M,σ) as forgery
A* can implement RO: a random
response to each new query!

A* gets f, but doesn’t have f-1 to sign

But x = H(M) is a random value that
A* can pick!

A* picks H(M) as x=f(y) for random y;
then Sign(M) = f-1(x) = y

(f,z)

A

Mi

f-1(H(Mi)) (M,σ)

Sig Mj H(Mj)

H

Proving Security in ROM
A* s.t. if A forges signature, then A* can break Trapdoor OWP

A* implements H and Sign: For each new M queried to H
(including by Sign), A* sets H(M)=f(y) for random y; Sign(M) = y

But A* should force A to invert z

For a random (new) query M (say tth) A* sets H(M)=z

Here queries include the “last
query” to H, i.e., the one for
verifying the forgery (may or
may not be a new query)

Given a bound q on the number of
queries that A makes to Sign/H, with
probability ≥ 1/q (and independent of
A’s view) A* would set H(M)=z, where
M is the message in the forgery

In that case forgery ⇒ σ = f-1(z) A

Mi

f-1(H(Mi)) (M,σ)

Sig

(f,z)

Mj H(Mj)

H

σ

