Hashes & MAC,
Digital Signatures

Lecture 16

One-time MAC

With 2-Universal Hash Functions

@ Trivial (very inefficient) solution (fo sign a single n bit message):

r‘lo

l"zo

r‘3o

@ Key: 2n random strings (each k-bit long) (rio,ri1)i-1.n 5

I"21

l"31

@ Signature for m;..mn be (rimi)iz1.n

@ Negligible probability that Eve can produce a signature on m’#m

@ A much more efficient solution, using 2-UHF (and still no
computational assumptions):

@ Onetime-MACKL(M) = h(M), where h<#, and & is a 2-UHF

@ Seeing hash of one input gives no information on hash of

another value

MAC

With Combinatorial Hash Functions and PRF

@ Recall: PRF is a MAC (on one-block messages)

@ CBC-MAC: Extends to any fixed length domain

@ Alternate approach (for fixed length domains):

|

Fk

el

@ MACkr*(M) = PRFk(h(M)) where h<#, and & a 2-UHF

[h(M) not revealed}

MAC

With Cryptographic Hash Functions

@ A proper MAC must work on inputs of variable length

@ Can make CBC-MAC work securely with variable input-length:
- Derive K as Fx(t), where t is the number of blocks
- Or, Use first block fo specify number of blocks
_ Or, output not the last tag T, but F«(T), where K’ an independent key (EMAC)
_ Or, XOR last message block with another key K’ (CMAC)

@ Idea: Leave variable input-lengths to the hash
@ But combinatorial hash functions worked with a fixed domain
@ Will use a cryptographic hash function

@ MAC*kn(M) = MACk(h(M)) where h<—#, and & a weak-CRHF

/h(M) may be)
@ Weak-CRHFs can be based on OWF. Or, can be more e caled

efficiently constructed from fixed input-length MACS |but only oracle
_access to h)

MAC

With Cryptographic Hash Functions
@ MAC*kn(M) = MACk(h(M)) where h<—#, and & a weak-CRHF

@ Weak-CRHFs can be based on OWF. Or, can be more
efficiently constructed from fixed input-length MACs.

@ Unlike the domain extension (to fixed length domain) using 2-UHF,
or CBC-MAC, this doesnt rely on pseudorandomness of MAC
@ Works with any one-block MAC (not just a PRF based MAC)
@ Could avoid “export restrictions” by not being a PRF

@ Candidate fixed input-length MACs: compression functions (with
key as 1V)

@ Recall: Compression functions used in Merkle-Damgard
iterated hash functions

HMAC

@ HMAC: Hash-based MAC <"

@ Essentially built from a compression (~

function f Iv_l
@ If keys K, Kz independent (called
NMAC), then secure MAC if: fis

a fixed input-length MAC & the
Merkle-Damgard iterated-hash is a
weak-CRHF

@ In HMAC (K1, K>) derived from (K',K"),
in turn heuristically derived from a
single key K. If f is a (weak kind of)
PRF K;, K2 can be considered
independent

v - | |
(IV Kll Kzlv h
v

Hash Not a Random Oracle!

@ Hash functions are no substitute for RO, especially if built

using iterated-hashing (even if the compression function was
to be modeled as an RO)

@ If His a Random Oracle, then just H(K|IM) will be a MAC

@ But if H is a Merkle-Damgard iterated-hash function, then
there is a simple length-extension attack for forgery

@ (That attack can be fixed by preventing extension:
prefix-free encoding)

@ Other suggestions like SHAI(M|IK), SHAL(K|IMIIK) all turned
out to be flawed too (even before breaking SHA1)

Digital Signatures

Syntax: KeyGen, Signsk and Verifyyk.
Security: Same experiment as MACS, but adversary given VK

Secure digital signatures using OWF, UOWHF and PRF
@ Hence, from OWF alone (more efficiently from OWP)
More efficient using CRHF instead of UOWHF

Even more efficient based on (strong) number-theoretic
assumptions

@ e.g. Cramer-Shoup Signature based on “"Strong RSA
assumption”

Efficient schemes secure in the Random Oracle Model

@ e.g. RSA-PSS in RSA Standard PKCS#1

One-time Digital Signatures

@ Recall One-time MAC to sign a single n bit message

Lamports
One-Time
Signature

@ Shared secret key: 2n random strings (each k-bit long) (rio,ri1)i-1.n

@ Signature for my..m, be (rimi)iz1.n

@ One-Time Digital Signature: Same signing key and
signature, but VK= (f(rip),f(ri1))i-1..n where f is a OWF

@ Verification applies f to signature elements and
compares with VK

@ Security [Exercise]

f(rio) | f(r2o) [f(r3o)

f(rty) | £(r2) | £(r3,)
l"lo T‘Zo l"3o
rl rg) r3

Domain Extension of
(One-time) Signatures

@ Lamports scheme has a fixed-length message (and SK/VK are
much longer than the message)

@ Hash-and-Sign domain extension for signatures

@ (If applied to one-time signature, still one-time, but with
variable input-length)

@ Domain extension using a CRHF (not weak CRHF, unlike for MAC)
@ Sign*skn(M) = Signsk(h(M)) where h<—# in both SK*VK*

@ Can use UOWHF, with fresh h every time (included in signature)
@ Sign*sk(M) = (h,Signsk(h,h(M))) where h<# picked by signer

@ Using a “certificate chain/tree”, can build a full-fledged signature
scheme starting from one-time signatures (skipped)

More Efficient Signatures

@ Diffie-Hellman suggestion (heuristic): Sign(M) = f-}(M) where
(SK,VK) = (f-1,f), a Trapdoor OWP pair. Verify(M,c) = 1 iff f(c)=M.

@ Attack: pick o, let M=f(c) (Existential forgery)

@ Fix: Sign(M) = f-1(Hash(M))

@ Secure? Adversary gets to choose M and hence Hash(M); so
signing oracle gives adversary access to f-! oracle. But Trapdoor
OWRP gives no guarantees when adversary is given f-! oracle.

@ If Hash(.) modeled as a random oracle then adversary can't
choose Hash(M), and effectively doesnt have access to f-!
oracle. Then indeed secure

@ “Standard schemes” like RSA-PSS are based on this

Proving Security in the
RO Model

@ To prove: If Trapdoor OWP secure, then Sign(M) = f-i(Hash(M)) is a

secure digital signature in the RO Model, with Hash modelled as a
random oracle

@ Intuition: adversary only sees (x,f-!(x)) where x is random,
which it could have obtained anyway, by picking f-{(x) first

@ Modeling as an RO: RO randomly initialized to a random function H
from {0,1}* to {0,1}k

@ Signer and verifier (and forger) get oracle access to H(.)

@ All probabilities also over the initialization of the RO

Proving Security in ROM

@ Reduction: If A forges signature (where Sign(M) = f-}(H(M)) with
(f,f-1) from Trapdoor OWP and H an RO), then A* that can break
Trapdoor OWP (i.e., given just f, and a random challenge z, can
find f-4(z) w.n.n.p). A*(f,z) runs A internally.

@ A expects f, access to the RO and a signing oracle f-}(Hash(.))
and outputs (M,s) as forgery

@ A can implement RO: a random
response to each new query! e

@ A* gets f, but doesnt have f-! to sign

@ But x = H(M) is a random value that
A“ can pick!

@ A* picks H(M) as x=f(y) for random v;
then Sign(M) = f-i(x) = vy

Proving Security in ROM

@ A* s.t. if A forges signature, then A can break Trapdoor OWP
@ A" implements H and Sign: For each new M queried to H
(including by Sign), A sets H(M)=Ff(y) for random y; Sign(M) = vy
@ But A* should force A to invert z
@ For a random (new) query M (say tth) A* sets H(M)=z

@ Here queries include the "last
query” to H, i.e., the one for
verifying the forgery (may or
may not be a new query)

@ Given a bound q on the number of
queries that A makes to Sign/H, with
probability > 1/q (and independent of
As view) A* would set H(M)=z, where
M is the message in the forgery

@ In that case forgery = o = f-I(2)

