Digital Signatures (ctd.)

Lecture 17

Digital Signatures

@& Syntax: KeyGen, Signsk and Verifyyk.
Security: Same experiment as MACS, but adversary given VK

lVQI”VK(M,s)

Advantage = Pr[Veryk(M,s)=1 and (M,s) & {(Misi)}]
Weaker variant: Advantage = Pr[Vervk(M,s)=1 and M ¢ {M}]

Digital Signatures

@ Online verification of real life identity is difficult

@ But the verification key for a
digital signature can serve as
your digital identity

@ OK to own multiple digital
idenftities

@ Compromised if you lose your
signing key

"On the Internet, nobaody knows you're a dog.”

@ Central to identity on the internet
(with the help of certificate authorities), crypto currencies, etc.

Signatures from OWF

&

Lamports scheme based on OWF

@ One-time and has a fixed-length message

@ One-time, fixed-length message signatures (Lamport)
Domain-Extension . arbitrary length messages (using UOWHF)
“Certificate Tree” . many-time signatures (using PRF)

@ So full-fledged digital signatures can be entirely based on OWF
@ Last time: Hash-and-Sign domain extension for signatures

@ Domain extension can be done using CRHF (more efficient) or
UOWHF (more secure)

@ Today: “Certificate tree”

One-Time — Many-Times

@ Certificate chain: VK; — (VK3, 62) — ... — (VK4, ot) — (m,o0)
where g is a signature on VK; that verifies w.r.t. VK

@ Suppose a "trustworthy” signer only signs the verification key of
another “trustworthy” signer. Then, if VK, is known to be issued by
a trustworthy signer, and all links verified, then the message is
signed by a trustworthy signer.

@ Certificate tree for one-time — many-times signatures
@ Idea: Each message is signed using a unique VK for that message

@ Verifier cant hold all VKs: A binary tree of VKs, with each leaf
designated for a message. Parent VK signs its pair of children
VKs (one-time, fixed-length sign). Verifier remembers only root
VK. Signer provides a certificate chain to the leaf VK used.

Signer cant remember all SKs: Uses a PRF to define the tree
(i.e., SK for each node), and remembers only the PRF seed

2

"Domain Extension of
Signatures using Hash

@ Domain extension using a CRHF (not weak CRHF, unlike for MAC)

@ Sign*skn(M) = Signsk(h(M)) where h<—# in both SK*VK*

@ Security: Forgery gives either a hash collision or a forgery for
the original (finite domain) signature

@ Formal reduction to a pair of adversaries. Hash adversary
sends h it receives as part of VK

@ Can use UOWHF, with fresh h every time (included in signature)

@ Sign*sk(M) = (h,Signsk(h,h(M))) where h<# picked by signer

@ Security: To use a signature s; in forgery, need M such that
h(M)=h(M;). But h is picked by signing algorithm after M; is
submitted. Breaks UOWHF security by finding such a collision.

@ In reduction, hash adversary guesses an i where collision
occurs and sends h it received as part of signature

Hash and Invert

@ Using a trapdoor OWP and a “hash”: Sign(M) = f-}(Hash(M))
@ Where (SK,VK) = (f-,f), a Trapdoor OWP pair
@ Secure in the random oracle model

@ Hash can handle variable length inpufs

& “Standard schemes” like RSA-PSS are based on this

Schnorr Signature

Public parameters: (G,g) where G is a prime-order group and g a
generator, for which DLA holds, and a random oracle H

6

@ Or (G,g) can be picked as part of key generation
@ Signing Key: y € Zq where G is of order q. Verification Key: Y = gv
@ Signy(M) = (x,s) where x = H(Mllgr) and s = r-xy, for a random r
a Verifyy(M,(x,s)): Compute R = gs-Yx and check x = H(MIIR)

@ Secure in the Random Oracle model under the Discrete Log
Assumption for a group

@ Alternately, under a heuristic model for the group (called the
Generic Group Model), but under standard-model assumptions
on the hash function

VK as ID: An Example
Identity-Based Encryption

@ In PKE, KeyGen produces a random (PK,SK) pair
@ Can I have a “fancy public-key” (e.g., my name)?

@ No! Not secure if one can pick any PK and find an SK for it!
@ But suppose a trusted authority for key generation

@ Then: Can it generate a valid (PK,SK) pair for any PK?

@ ldentity-Based Encryption: a key-server (with a master
secret-key) that can generate such pairs

@ Encryption will use the master public-key, and the
receivers "identity” (i.e., fancy public-key)

@ In PKE, sender has fo refrieve PK for every party it
wants to talk to (from a trusted public directory)

@ In IBE, receiver has to obtain its SK from the authority

VK as ID: An Example
Identity-Based Encryption

@ Security requirement for IBE (will skip formal statement):
@ Environment/adversary decides the ID of the honest parties

@ Adversary can adaptively request SK for any number of IDs
(which are not used for honest parties)

@ “Semantic security” for encryption with the ID of honest
parties (i.e., with no access to decryption: CPA security)

@ IBE (even CPA-secure) can easily give CCA-secure PKE!
@ IBE: Cant malleate ciphertext for one ID into one for another
& PKEncmpk(m) = (id, C=IBEncwmex(id; m), signia(C))

@ Security: cant create a different encryp’rion\
with same id (signatures security); cant Digital Signature with

malleate using a different id (IBES security) | ifs public-key used as
the ID in IBE

~N

\-

