
Digital Signatures (ctd.)
Lecture 17

Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.  
Security: Same experiment as MAC’s, but adversary given VK

VK

Mi

si =

SignSK(Mi)

(M,s)

VerVK(M,s)

Advantage = Pr[VerVK(M,s)=1 and (M,s) ∉ {(Mi,si)}]

SigSK VerVK

Weaker variant: Advantage = Pr[VerVK(M,s)=1 and M ∉ {Mi}]

RE
CA

LL

Digital Signatures

Online verification of real life identity is difficult

But the verification key for a  
digital signature can serve as  
your digital identity

OK to own multiple digital  
identities

Compromised if you lose your 
signing key

Central to identity on the internet  
(with the help of certificate authorities), crypto currencies, etc.

Signatures from OWF

Lamport’s scheme based on OWF

One-time and has a fixed-length message

One-time, fixed-length message signatures (Lamport)  
 Domain-Extension→ arbitrary length messages (using UOWHF) 
 “Certificate Tree”→ many-time signatures (using PRF)

So full-fledged digital signatures can be entirely based on OWF

Last time: Hash-and-Sign domain extension for signatures

Domain extension can be done using CRHF (more efficient) or
UOWHF (more secure)

Today: “Certificate tree”

One-Time → Many-Times
Certificate chain: VK1 → (VK2, σ2) → … → (VKt, σt) → (m,σ) 
where σi is a signature on VKi that verifies w.r.t. VKi-1

Suppose a “trustworthy” signer only signs the verification key of
another “trustworthy” signer. Then, if VK1 is known to be issued by
a trustworthy signer, and all links verified, then the message is
signed by a trustworthy signer.

Certificate tree for one-time → many-times signatures

Idea: Each message is signed using a unique VK for that message

Verifier can’t hold all VKs: A binary tree of VKs, with each leaf
designated for a message. Parent VK signs its pair of children
VKs (one-time, fixed-length sign). Verifier remembers only root
VK. Signer provides a certificate chain to the leaf VK used.

Signer can’t remember all SKs: Uses a PRF to define the tree
(i.e., SK for each node), and remembers only the PRF seed

Domain Extension of
Signatures using Hash

Domain extension using a CRHF (not weak CRHF, unlike for MAC)

Sign*SK,h(M) = SignSK(h(M)) where h←H in both SK*,VK*

Security: Forgery gives either a hash collision or a forgery for
the original (finite domain) signature

Formal reduction to a pair of adversaries. Hash adversary
sends h it receives as part of VK

Can use UOWHF, with fresh h every time (included in signature)

Sign*SK(M) = (h,SignSK(h,h(M))) where h←H picked by signer

Security: To use a signature si in forgery, need M such that
h(M)=h(Mi). But h is picked by signing algorithm after Mi is
submitted. Breaks UOWHF security by finding such a collision.

In reduction, hash adversary guesses an i where collision
occurs and sends h it received as part of signature

RE
CA

LL

More Efficient Signatures:
Hash and Invert

Using a trapdoor OWP and a “hash”: Sign(M) = f-1(Hash(M))

Where (SK,VK) = (f-1,f), a Trapdoor OWP pair

Secure in the random oracle model

Hash can handle variable length inputs

“Standard schemes” like RSA-PSS are based on this

RE
CA

LL

Schnorr Signature
Public parameters: (G,g) where G is a prime-order group and g a
generator, for which DLA holds, and a random oracle H

Or (G,g) can be picked as part of key generation

Signing Key: y ∈ Zq where G is of order q. Verification Key: Y = gy

Signy(M) = (x,s) where x = H(M||gr) and s = r-xy, for a random r

VerifyY(M,(x,s)): Compute R = gs⋅Yx and check x = H(M||R)

Secure in the Random Oracle model under the Discrete Log
Assumption for a group

Alternately, under a heuristic model for the group (called the
Generic Group Model), but under standard-model assumptions
on the hash function

In PKE, KeyGen produces a random (PK,SK) pair

Can I have a “fancy public-key” (e.g., my name)?

No! Not secure if one can pick any PK and find an SK for it!

But suppose a trusted authority for key generation

Then: Can it generate a valid (PK,SK) pair for any PK?

Identity-Based Encryption: a key-server (with a master
secret-key) that can generate such pairs

Encryption will use the master public-key, and the
receiver’s “identity” (i.e., fancy public-key)

In PKE, sender has to retrieve PK for every party it
wants to talk to (from a trusted public directory)

In IBE, receiver has to obtain its SK from the authority

VK as ID: An Example

Identity-Based Encryption

Security requirement for IBE (will skip formal statement):

Environment/adversary decides the ID of the honest parties

Adversary can adaptively request SK for any number of IDs
(which are not used for honest parties)

“Semantic security” for encryption with the ID of honest
parties (i.e., with no access to decryption: CPA security)

IBE (even CPA-secure) can easily give CCA-secure PKE!

IBE: Can’t malleate ciphertext for one ID into one for another

PKEncMPK(m) = (id, C=IBEncMPK(id; m), signid(C))

Security: can’t create a different encryption  
with same id (signature’s security); can’t  
malleate using a different id (IBE’s security)

Digital Signature with  
its public-key used as

the ID in IBE

VK as ID: An Example

Identity-Based Encryption

