Wrap Up: Cryptographic Primitives

Lecture 18

Alternate Assumptions for PKE Randomness Extractors

Story So Far

Basic primitives for secure communication:

	Shared-Key	Public-Key
Encryption	SKE	PKE
Authentication	MAC	Signature

Ingredients/other primitives covered (or coming up): PRF, Hash functions, Secret-Sharing, Randomness extractors, Zero-Knowledge Proofs

PKE Math

Public-Key Crypto Maths

- Initially public-key crypto was based on hardness of problems in modular arithmetic and number theory (RSA/factoring, modular discrete log)
- Problems from several other areas, since then
 - Elliptic curve cryptography (mainstream, currently)
 - Code-based crypto
 - Lattice-based crypto
 - Multivariate Polynomial crypto

"Post-Quantum Crypto" candidates

Elliptic Curve Crypto

- Starting 1985 (by Miller, Koblitz)
- Groups where Discrete log (and DDH) is considered much harder than in modular arithmetic, and hence much smaller groups can be used.
- Given a finite field F, one can define a commutative group G ⊆ F², as points (x,y) which lie on an "elliptic curve," with an appropriately defined group operation
 - Different curves yield different groups
- Today, most popular PKE schemes use Diffie-Hellman over elliptic curves specified by various standards.
 - Pro: Significantly faster!
 - Con: Which elliptic curves are good?

Code-Based Crypto

- Coding theory based, since McEliece crypto system (1978)
 - A random linear code is specified by a matrix G s.t. a message x is encoded into a codeword xG. Can easily check if c is a codeword, but seems hard to check if c is close in Hamming distance to a codeword.
 - Structured linear codes exist for which error correcting algorithms can correct <u>sparse</u> errors
 - Idea: Masquerade structured codes to look random. Secret key reveals the original structured code. Encrypt as a codeword plus a sparse noise vector.
- Not commonly used today, as large key sizes and slow computation

Code-Based Crypto

- \circ G: a k \times n generator matrix for a good code over a GF(2)
- \circ S: a random $k \times k$ invertible matrix
- P: a random n × n permutation matrix
- Public Key: H = SGP, private key = (S,G,P)
- Encryption: mH+e, where e is a random sparse vector (sparse enough to allow error correction for the original code)
- Decryption: Let $d := cP^{-1} = mSG + e'$, where $e' = eP^{-1}$ as sparse as e. Decode(d) to get mS, and compute m from it
- Not CPA secure! [Why?]
- Use [r m] instead of m, r being a random pad
 - CPA secure under the assumptions that H is pseudorandom and "Learning Parity with Noise" is hard for random H

Lattice-Based Crypto

- Lattice: set of (real) vectors obtained by linear combination of basis vectors using only integer coefficients
 - Hard problems related to finding short vectors in the lattice
- Original use of lattices: to break a candidate for PKE (called the "Knapsack cryptosystem") by Merkle and Hellman
- Constructions: NTRU (1996), Ajtai/Ajtai-Dwork (1996/97), ...
- ${\color{red} {\it o}}$ More recent constructions based on Learning With Errors (LWE) over \mathbb{Z}_q which is hard if some lattice problems are
 - (A, Ax + e) is pseudorandom when e is a "short" noise vector

Lattice-Based Crypto: PKE

- NTRU approach: Private key is a "good" basis, and the public key is a "bad basis"
 - Worst basis (one that can be efficiently computed from any basis): Hermite Normal Form (HNF) basis
- To encrypt a message, encode it (randomized) as a short "noise vector" v. Output c = v+u for a lattice point u that is chosen using the public basis
 - To decrypt, use the good basis to find u as the closest lattice vector to c, and recover v=c-u
- NTRU Encryption: use lattices with succinct basis
- Conjectured to be CPA secure for appropriate lattices. No security reduction known to simple lattice problems

Lattice-Based Crypto: PKE

cf. El Gamal: $A \rightarrow g$, $S \rightarrow y$, $P \rightarrow Y = g^y \mid a \rightarrow x$, $u \rightarrow g^x$, $P^T a \rightarrow Y^x$

- An LWE based approach:
 - Public-key is (A,P) where P=AS+E, for random months trices (of appropriate dimensions) A and S, and a noise matrix E over \mathbb{Z}_q
 - To encrypt an n bit message, map it to an ("error-correctable") vector v; pick a random vector a with small coordinates; ciphertext is (u,c) where $u = A^T a$ and $c = P^T a + v$
 - Decryption using S: recover message from $c S^T u = v + E^T a$, by "error correcting" (error not sparse, but has small entries)
 - © CPA security: By LWE assumption, the public-key is indistinguishable from random; and, encryption under truly random (A,P) loses essentially all information about the message
 - Coming up: PTa acts as a one-time pad, even given A, P, ATa

- Consider a PRG which outputs a pseudorandom group element in some complicated group
 - A standard bit-string representation of a random group element may not be (pseudo)random
 - Can we efficiently map it to a pseudorandom bit string? Depends on the group...
- Suppose a chip for producing random bits shows some complicated dependencies/biases, but still is highly unpredictable
 - Can we purify it to extract <u>uniform</u> randomness? Depends on the specific dependencies...
- A general tool for purifying randomness: Randomness Extractor

- Statistical guarantees (output not just pseudorandom, but truly random, if input has sufficient entropy)
- 2-Universal Hash Functions (when sufficiently compressing)
 - "Optimal" in all parameters except seed length
- Constructions with shorter seeds known
 - e.g. Based on expander graphs

- Strong extractor: output is random even when the seed for extraction is revealed
 - 2-UHF is in fact a strong extractor (seed is the hash function)
- Useful in key agreement
 - Alice and Bob exchange a non-uniform key, with a lot of pseudoentropy for Eve (say, g^{xy})
 - Alice sends a random seed for a strong extractor to Bob, in the clear
 - Key derivation: Alice and Bob extract a new key, which is pseudorandom (i.e., indistinguishable from a uniform bit string)
- In LWE-based PKE
 - $h_M(x) = Mx$, where M compressing, $x \neq 0$, is a 2-UHF [Exercise]
 - a (with small entries) has enough entropy given (A, A^Ta), and so P^Ta almost uniform even given (A, P, A^Ta)

- Pseudorandomness Extractors (a.k.a. computational extractors): output is guaranteed only to be pseudorandom if input has sufficient (pseudo)entropy
- Key Derivation Function: Strong pseudorandomness extractor
 - Cannot directly use a block-cipher, because pseudorandomness required even when the randomly chosen seed is public ("salt")
 - Extract-Then-Expand: It's enough to extract a key for a PRF
 - Can be based on HMAC or CBC-MAC: Statistical guarantee, if compression function/block-cipher were a public but randomly chosen function/permutation
 - Models KDF in IPsec's Internet Key Exchange (IKE) protocol. HMAC version later standardised as HKDF.

- Extractors for use in system Random Number Generator (think /dev/random)
 - Additional issues:
 - Online model, with a variable (and unknown) rate of entropy accumulation
 - Should recover from compromise due to low entropy phases
 - Constructions provably secure in such models known
 - Using PRG (e.g., AES in CTR mode), universal hashing and "pool scheduling" (similar to Fortuna, used in Windows)

Coming Up

- Secure communication in practice
 - SSL/TLS
 - IPSec
 - BGPSec
 - DNSSec