Communication Protocols

Lecture 19

TLS

We saw...

&

Symmetric-Key Components
& SKE, MAC

@ Public-Key Components

D

PKE, Digital Signatures

@ Building blocks: Block-ciphers (AES), Hash-functions (SHA-3),
Trapdoor PRG/OWP for PKE (e.g., DDH, RSA) and
Random Oracle heuristics (in RSA-OAEP, RSA-PSS)

)
</

Symmetric-Key primitives much faster than Public-Key ones

@ Hybrid Encryption gets best of both worlds

Secure Communication in
Practice

a Can do at different levels of the “network stack”

@ e.g., application layer”, “transportation layer” or "network
layer”

Protocol standards in all cases

6

@ To be interoperable
@ To not insert bugs by doing crypto engineering oneself

e.g.: SSL/TLS (used in https), IPSec (in the "network layer”)

)
o

Allows implementation in libraries or within OS kernels

o«

-
@

Security Architectures
(An example)

Security architecture (client perspective)

Semice Provde

Appication Application Application Apolication Application

Web Services Sdcurity
SOAP sonp SOAP

HTTP M_?.I HTTP Autherpication

HTTP HTTP

SSL(7) SSL(?)
o >

TLS/SSL

TCP

P

MAC MAC

SSL Sarvice
Endpoirt

SSL processor or
HTTP proxy

might swiich o

SEL (see notes)

From the IBM WebSphere Developer Technical Journal

Secure Communication
Infrastructure

Goal: a way for Alice and Bob fo setup a private and authenticated
communication channel (can give a detailed SIM-definition)

D

Simplest idea: Use a (SIM-CCA secure) public-key encryption
(possibly a hybrid encryption) to send signed (using an existentially
unforgeable signature scheme) messages (with sequence numbers
and channel id)

)

@ Limitation: Alice, Bob need to know each others public-keys

@ Room for efficiency improvements if Alice and Bob engage in
“sessions”
@ Can maintain state (keys, counters) throughout the session
@ If fresh PKE key in each authenticated session, only CPA
security needed

Secure Communication
Infrastructure

Secure Communication Sessions

(Authenticated)
@ Handshake protocol: establish private shared keys< Key-Exchange

@ Record protocol: use efficient symmetric-key schemes

&

Server-to-server communication: Both parties have (certified)
public-keys

Client-server communication: server has (certified) public-keys

@ Client "knows" server. Server willing to talk to all clients
AN

)
<)

Client-Client communication (e.g., email) [server may “know” (some) clients

Clients share public-keys in ad hoc too, using passwords, pre-shared
keys, or if they have (certified)
ways

public-keys. Often implemented in
application-layer

Certificate Authorities

@ How does a client know a servers public-key?

@ Based on what is received during a first session? (e.g., first
ssh connection to a server)

@ Better idea: Chain of trust

@ Client knows a certifying authority’s public key (for signature)

oo baddy”

Google Trust Services

COMODO ,l:f-’ '»',:,:
Creating Trust Online®

Certificate Authorities

@ How does a client know a servers public-key?

@ Based on what is received during a first session? (e.g., first
ssh connection to a server)

@ Better idea: Chain of trust

@ Client knows a certifying authority’s public key (for signature)

@ Bundled with the software/hardware
@ Certifying Authority signs the signature PK of the server

@ CA is assumed to have verified that the PK was generated
by the “correct” server before signing

& Validation standards: Domain/Extended validation

Forward Secrecy

@ Servers have long term public keys that are certified

@ Would be enough to have long term signature keys, but in
practice long term encryption keys foo

@ Problem: if the long term key is leaked, old communications are
also revealed

@ Adversary may have already stored, or even actively
participated in old sessions

@ Solution: Do a fresh key-exchange for each session
(authenticated using signatures)

@ TLS 1.3 removes support for static keys (except for
externally prepared Pre-Shared Keys)

Authenticated Encryption

MAC-then-encrypt]

is not necessarily

@ Doing encryption + authentication efficiently CCA-secure

@ Generic composition (encrypt, then MAC) needs two keys and
two passes

@ AE aims to do this more efficiently (one single module, which
can be optimised together)

@ Several constructions based on block-ciphers (modes of
operation) provably secure modeling block-cipher as PRP

@ One pass: IAPM, OCB, ... [patented]
@ Two pass: CCM, GCM, S1V, ... [included in NIST standards]

@ AE with Associated Data (AEAD): Allows unencrypted (but
authenticated) parts of the plaintext, for headers etc.

@ Used as the basic symmetric key primitive in TLS 1.3

A Simple Secure
Communication Scheme

a Handshake Servers PK either trusted (from
a previous session for e.g) or
certified by a trusted CA, using

)

a Client sends fresh session keys for MAC

and SKE to the server using SIM-CCA a Digital Signature scheme
secure PKE, with servers PK (i.e. over
an unauthenticated, but private channel) Does not have
forward secrecy!
@ For authentication only: use MAC Not allowed in TLS 1.3

@ In fact, a "stream-MAC": To send more
than one message, but without allowing
reordering

@ For authentication + encryption:
encrypt-then-MAC

@ stream-cipher, and “stream-MAC"

@

D

@ stream-cipher, and “stream-MAC"

A Simple Secure
Communication Scheme

Servers message is authenticated,
Handshake and can include additional data,

)

@ Client sends first message of a key encrypted using the newly defined

key. Also, includes a certificate of

exchange protocol and server responds its signature key.

with the second message. Symmeitric

keys derived from the resulting secret. = Need to avoid replay attacks
(infeasible for server to explicitly

For authentication only: use MAC it o gty STAGREIR

a In fact a “stream-MAC”: To send more Recall “inefficient” domain-

extension of MAC: Add a
sequence number (and a
session-specific nonce) to each
message before MAC'ing

than one message, but without allowing
reordering

For authentication + encryption:
encrypt-then-MAC

MAC serves dual purposes of
CCA security and authentication

Negotiations on protocol version,
“cipher suites” for SKE (block-ciphers

TL S (S S L) & hash), PKE & signature algorithms.

e.g. cipher-suite: RSA-OAEP for key-
exchange, AES for SKE,
HMAC-SHA256 for MAC

- HandShake (In TLS 1.3, Auth. EnC.)
. Server sends a certificate of its PKE
@ Client sends first message of a key public-Key, which the client verifies
exchange protocol and server responds
with the second message. Symmetric Separ dse TlIRIANIEY) WEk

: : generation (fo avoid replay attack
keys derived from the resulfing secret. issues): Roughly, client sends a key K

for a PRF; a master key generated as

)

@ For authentication only: use MAC PRFk(x,y) where x from client and vy
from server. SKE and MAC keys
a In fact, a “stream-MAC”: To send more Rt Lolnnostertkey
: § (TLS 1.3 uses HKDF instead)
than one message, but without allowing
. TLS 1.2 uses MAC-then-encrypt! Not
reorderlng CCA secure in general, but secure

! : . with stream-cipher (and CBC mode).
@ For authentication + encryption: TLS 1.3 uses AEAD.

encrypt-then-MAC

Several details on closing sessions,
session caching, resuming sessions,

@ stream-cipher, and “stream-MAC" .
using pre-shared keys ...

TLS: Some Considerations

@ Overall security goal: Authenticated and Confidential Channel
Establishment (ACCE), or Server-only ACCE

a Handshake Protocol

Cipher suites are negotiated, not fixed — "Downgrade attacks”

Q

» Doesnt use CCA secure PKE, but is overall CCA secure if error in
decryption "never revealed” (tricky to ensure!)

@ Record Protocol
@& Using MAC-then-Encrypt is fricky:

@ CCA-secure when using SKE implemented using a stream
cipher (or block-cipher in CTR mode) or CBC-MAC

@ But insecure if it reveals information when decryption fails

@ e.g., different times taken by MAC check (or different error
messages!) when a format error in decrypted message

@ TLS 1.3 uses easier to analyse protocols

TLS: Some Considerations

Numerous vulnerabilities keep surfacing

FREAK, DROWN, POODLE, Heartbleed, Logjam, ...
And numerous unnamed ones: www.openssl.org/news/vulnerabilities.html
Listed as part of Common Vulnerabilities and Exposures (CVE) list: cve.mitre.org/

&

Q

Bugs in protocols
@ Often in complex mechanisms created for efficiency

@ Often facilitated by the existence of weakened “export grade”
encryption and improved computational resources

@ Also because of weaker legacy encryption schemes (e.g.
Encryption from RSA PKCS#1 v1.5 — known to be not CCA
secure and replaced in 1998 — is still used in TLS)

@ Bugs in implementations
@ Side-channels that are not originally considered

@ Back-Doors (?) in the primitives used in the standards

http://www.openssl.org/news/vulnerabilities.html
http://cve.mitre.org/

TLS: Some Considerations

Numerous vulnerabilities keep surfacing

FREAK, DROWN, POODLE, Heartbleed, Logjam, ...
And numerous unnamed ones: www.openssl.org/news/vulnerabilities.html
Listed as part of Common Vulnerabilities and Exposures (CVE) list: cve.mitre.org/

Q

¥ & D

(- \ei ’—;"*- ’\\"t\ @Q’,‘b\") \"}\.
%<§r@¢%§TQ&Q3K i

SOQEL L EP

&
) N
IV >N
\9§9§$§93f

o 2015 2016 2017
g 00 10 18

(Kenny Paterson & Thyla van der Merwe, Dec 2016

cnicryprion rrom KSA PKCS#1 v1.5 — Known 10 be noi Ll
secure and replaced in 1998 — is still used in TLS)

@ Bugs in implementations
@ Side-channels that are not originally considered

@ Back-Doors (?) in the primitives used in the standards

http://www.openssl.org/news/vulnerabilities.html
http://cve.mitre.org/

