Zero Knowledge Proofs

Lecture 21

DNSSEC

- Recall: Name servers, when queried with a domain name, return an IP address record (signed by the zone owner), or report that no such domain name exists
- Question: How to prove that an entry is missing, without revealing anything else?
 - NSEC: Have adjacent pairs (in sorted order of domain names) signed together. Return a pair flanking the queried name.
 - Reveals the adjacent domains. Allows zone enumeration.
 - NSEC3: Use H(domain-name) in this proof.
 - Still allows offline enumeration (domain names have lowentropy)
- A recent proposal: NSEC5

DNSSEC

- A recent proposal: NSEC5
 - Using "Verifiable Random Functions" (VRF)
- VRF is a PRF, with an additional public-key (SK & PK generated honestly)
 - Remains pseudorandom even given public-key
 - SK allows one to give a <u>proof</u> that $F_{SK}(x) = y$, without revealing SK. Proof can be verified using a PK.
 - A Zero-Knowledge proof!
 - NSEC5 proposes a Random Oracle based VRF (assuming hardness of Discrete Log)

DNSSEC

- Using a VRF to protect against zone-enumeration
- Instead of H(domain name), use F_{SK}(domain name)
 - For a missing entry for a query Q, return:
 - Y, and a VRF proof that $F_{SK}(Q) = Y$
 - \odot A pair of consecutive entries (Y₁, Y₂), signed by zone-owner, such that Y₁ < Y < Y₂
- Name server needs the VRF key SK (generated by the zone-owner) to compute F_{SK}(Q) and the proof. But does not have access to the signing key.
- Adversary querying an honest name server learns the presence/ absence of an entry (and and an upper bound on the total number of entries)
- Corrupt name server learns all entries, and can also refuse to answer queries, but it cannot give a wrong response

VRF

- How to build a VRF?
 - Original construction from [MRV'99]
 - Required PRF security even for PK generated by the adversary
 - Constructions from RSA and "bilinear pairings"
- NSEC5 uses another VRF based on the discrete log assumption, but in the random oracle model
 - R.O. used for a proof-friendly PRF and the proof system itself

A PRF from RO

- F_{SK}(Q) = H(SK||Q) is a PRF if H is a random oracle (and SK long enough)
 - Why? Infeasible to guess SK correctly. Without querying H on prefix SK, F_{SK} is identical to a truly random function.
- But no PK for this F and no way to prove correct evaluation
- Instead, let (SK,PK) = (y, Y=g^y) and $F_y(Q) = H'(C^y)$, where C=H(Q)
 - Still a PRF (remains infeasible to guess y from Y, under DLA)
 - \odot Need a way to prove that $F_{SK}(Q) = z$
 - Plan: Reveal D=C^y and prove that it is indeed C^y. But how?
 - A ZK proof of equality of discrete logs for (g,Y) and (C,D)
 - i.e., $\exists y \text{ s.t. } g^y = Y \text{ and } C^y = D$

ZK Proof

- Alice and Bob hold some data x. Bob wants to prove that it has some "property."
 - Properties we are typically interested in are "NP properties"
 - An NP property is specified by a poly-time computable predicate R: x has the property = ∃w s.t. R(x,w)=1
 - i.e., there's a certificate to prove the property
 - Trivial proof for NP properties: send the certificate
- © Can a proof reveal nothing beyond the fact that x has the property?
- Yes!
- Will allow interactive proofs (for now)

ZK Proof

- Consider an NP property specified by a predicate R: i.e., x has the property $\equiv \exists w \text{ s.t. } R(x,w)=1$. A ZK proof protocol $P \longleftrightarrow V$ has the following properties
 - © Completeness: if $\exists w \ R(x,w)=1$, then $Pr[P(x,w)\longleftrightarrow V(x)=1]=1$
 - Soundness: if $\exists w \ R(x,w)=1$, then $Pr[P^*(x)\longleftrightarrow V(x)=1]=negl$ (for any PPT P*)

 V learns nothing beyond the fact that
 - A stronger notion: Proof of Knowledge
 - Zero-Knowledge: if $\exists w \ R(x,w)=1$, then view of the verifier in $P(x,w)\longleftrightarrow V(x)$ can be (indistinguishably) simulated from x
 - This is called Honest Verifier ZK
 - Stronger property: For any PPT V*, there is a simulator S s.t., View_{∨*}(P(x,w)←→V*(x)) ≈ S(x)

x has the property

Honest-Verifier ZK Proofs

- ZK Proof of knowledge of discrete log of A=g^r
 - Aside: this can be used to prove knowledge of the message in an El Gamal encryption (A,B) = (g^r, m Y^r)
 - P \rightarrow V: U := g^u ; V \rightarrow P: v ; P \rightarrow V: w := rv + u ; V checks: g^w = A^vU
 - Proof of Knowledge:
 - Firstly, $g^w = A^vU \Rightarrow w = rv+u$, where $U = g^u$
 - If after sending U, P could respond to two different values of v: $w_1 = rv_1 + u$ and $w_2 = rv_2 + u$, then can solve for r
 - \odot HVZK: simulation picks w, v first and sets U = g^w/A^v

HVZK and Special Soundness

- HVZK: Simulation for honest (passively corrupt) verifier
 - e.g. in PoK of discrete log, simulator picks (v,w) first and computes U (without knowing u). Relies on verifier to pick v independent of U.
- Special soundness: If given (U,v,w) and (U,v',w') s.t. v≠v' and both accepted by verifier, then can derive a valid witness
 - e.g. solve r from w=rv+u and w'=rv'+u (given v,w,v',w')
 - Implies soundness: for each U s.t. prover has significant probability of being able to convince, can extract r from the prover with comparable probability (using "rewinding", in a stand-alone setting)

Honest-Verifier ZK Proofs

- \odot ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)), i.e., Y = g^r and D = C^r [Chaum-Pederson]
 - © Can be used to prove equality of two El Gamal encryptions (A,B) & (A',B') w.r.t public-key (g,Y): set (C,D) := (A/A',B/B')
- $P \rightarrow V$: (U,M) := (g^u,C^u); $V \rightarrow P$: V; $P \rightarrow V$: W := rv + u; V checks: $g^w = Y^vU$ and $C^w = D^vM$ Two parallel executions of the
- Special Soundness:
 - $g^w=Y^vU$, $C^w=D^vM \Rightarrow w = rv+u = r'v+u'$ where $U=g^u$, $M=g^{u'}$ and $Y=g^r$, $D=C^{r'}$
 - If after sending (U,M) P could respond to two different values of v: $rv_1 + u = r'v_1 + u'$ and $rv_2 + u = r'v_2 + u'$, then r=r'

previous proof, with same v and w

(and same u, r)

HVZK: simulation picks w, v first and sets U=gw/Av, M=Cw/Dv

Fiat-Shamir Heuristic

- Limitation: Honest-Verifier ZK does not guarantee ZK when verifier is actively corrupt
 - Can be fixed by implementing the verifier using "secure 2party computation"
 - If verifier is a public-coin program (as in Chaum-Pederson) — i.e., simply picks random values publicly then 2PC needed only to generate random coins
 - Alternatively, Fiat-Shamir Heuristic: random coins from verifier defined as H(trans), where H is a random oracle and trans is the transcript of the proof so far
 - Also, removes need for interaction in the proof!

VRF

- NSEC5 VRF based on the discrete log assumption and a random oracle based non-interactive ZK proof
 - \otimes (SK,PK) = (y, Y=g^y) and $F_y(Q) = H'(C^y)$, where C=H(Q)
 - If H' is an R.O., then DLA ensures F is a PRF
 - Proof that $F_y(Q) = z$: D s.t. H'(D) = z and a ZK proof of equality of discrete logs for (g,Y) and (C,D)
 - \odot i.e., $\exists y \text{ s.t. } g^y = Y \text{ and } C^y = D$
 - Non-interactive proof using the Fiat-Shamir heuristic applied to Chaum-Pederson
 - Does adding the proof hurt PRF property?
 - Proof reveals nothing more than what (g,Y,C,D) reveals
 - Which reveals nothing more than what (g,Y) reveals: (C,D) can be simulated as (g^r,Y^r) since H random oracle

Summary

- Fairly efficient ZK proofs systems exist for all NP properties
- Even more efficient HVZK proof systems for specialised problems like equality of discrete logs
- Fiat-Shamir heuristics can convert such protocols into noninteractive proofs secure against actively corrupt verifiers too (but in the Random Oracle model)