Quiz 1

Cryptography & Network Security I CS 406: Spring 2018

March 6, 2018

[Total: 100 pts (4 problems of 25 pts each)]

- 1. Computational Indistinguishability. Let U_k stand for the uniform distribution over $\{0,1\}^k$ (for each value of the security parameter k). Let X_k and Y_k be distributions and $S_k \subseteq \{0,1\}^k$ a set such that:
 - i) X_k is uniform over S_k and Y_k is uniform over $\{0,1\}^k \setminus S_k$.
 - ii) $X_k \approx U_k$
 - iii) $|S_k| = 2^{k-1}$.
 - (a) Show that $Y_k \approx U_k$.

[18 pts]

Hint: Can you show that a distinguisher between Y_k and U_k is also a distinguisher between X_k and U_k ?

(b) Suppose we remove condition (iii) that $|S_k| = 2^{k-1}$ (but retain conditions (i) and (ii)). Then give an example of S_k such that $Y_k \not\approx U_k$. [7 pts]

2. Secret-Sharing.

Alice tells Bob that she has designed a 2-out-of-2 secret-sharing scheme for the message space $\mathcal{M} = \{0, 1\}$, using an $m \times n$ matrix D, as follows: to share $b \in \{0, 1\}$, the sharing algorithm picks uniformly at random a cell (i, j) in the matrix D such that $D_{i,j} = b$, and lets the two shares be i and j respectively (here, $i \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, n\}$).

(D may contain entries other than 0 and 1. These cells will never be picked by the sharing algorithm.)

(a) What is the condition on *D* for Alice's scheme to be a valid secret-sharing scheme? State your condition in terms of the following quantities: $R_i(b)$ and $C_j(b)$ are, respectively, the number of occurrences of *b* in the *i*th row and *j*th column of *D*, and $N(b) = \sum_{i=1}^{m} R_i(b) = \sum_{j=1}^{n} C_j(b)$ is the total number of occurrences of *b* in *D*. Show how you arrive at this condition from the requirements on a valid 2-out-of-2 secret-sharing scheme. [18 pts]

(b) Alice then tells Bob that D is a 3×3 matrix, and its first row is (0, 0, 1) (i.e., $D_{1,1} = D_{1,2} = 0, D_{1,3} = 1$). Choose the correct option from the below and justify your answer:

[7 pts]

- A. Alice's scheme cannot satisfy correctness and security requirements of a secret-sharing scheme. (If you choose this option, argue how it follows from your condition above.)
- B. There is a unique way to complete the matrix D so that Alice's scheme is a valid secret-sharing scheme. (If you choose this option, show this D, and briefly justify why it is unique.)
- C. There are multiple ways to complete the matrix D so that Alice's scheme is a valid secret-sharing scheme. (If you choose this option, describe all the valid ways in which D can be completed.)

3. Symmetric-Key Encryption Using Block-Ciphers.

Recall the CPA secure encryption scheme from class, using a block-cipher (or PRF) F: $Enc(m, K) = (r, F_K(r) \oplus m)$ where r is randomly chosen by Enc, K is the key and m is the message – each being one block long (k bits). The following problems relate to alternate suggestions for encryption.

In each problem below, if you need any features of a block-cipher that are not guaranteed by a PRF, you should explicitly mention them.

- (a) Consider $Enc(m, K) = (r, F_K(r \oplus m))$, where F is a block-cipher.
 - i. Show that this is a CPA secure encryption scheme. You should describe how an adversary A in the CPA security game can be turned into an adversary A^* against the PRF, and argue that if A had a non-negligible advantage ϵ in its game, then A^* will have a non-negligible advantage ϵ^* in its game. [16 pts]

Hint: A^* will internally run the CPA security game involving A. Arrange it so that if A^* is interacting with a truly random function, then A will have negligible advantage. Be sure to argue why this is so.

ii. How will you implement a decryption algorithm Dec for this encryption scheme.

(b) Consider $Enc(m, K) = (r, F_r(K) \oplus m)$, where F is a block-cipher. Give an explicit adversary in the CPA security game to show that this is not a CPA secure encryption scheme. [5 pts]

ne:	Roll no:	
. Multiple	e Choice and fill in the blanks. (For (a)-(d), select all the correct answers.)	[25 pts]
(a) For dete	one-time symmetric-key encryption, without loss of generality one may consider the encryption algor erministic because:	ithm to be [5 pts]
	Any randomness needed by the encryption algorithm can be supplied as part of the key.	
	Since it is used only once, the random string in the encryption algorithm can be replaced by a fixed s the all zeros string).	string (say,
	Any randomness needed by the encryption algorithm can be considered to be part of the message.	
	The decryption algorithm, which inverts encryption, is deterministic and hence there is no benefit encryption be randomized.	in letting
	None of the above.	
(b) White F , the second sec	tich of the following are correct expressions for computing the CBC-MAC tag, using a key K and a bl for a <i>t</i> -block message $m = m_1 \dots m_t$ where each m_i is exactly one block long. Below $\overline{0}$ denotes os.	ock-cipher a block of [5 pts]
	$x_0 = \overline{0}$; for $i \in \{1, \dots, t\}$, $x_i = m_i \oplus x_{i-1}$ and $y_i = F_K(x_i)$. Output y_t .	
	$y_0 = \overline{0}$; for $i \in \{1,, t\}$, $y_i = F_{K \oplus m_i}(y_{i-1})$. Output y_t .	
	$y_0 = \overline{0}$; for $i \in \{1, \ldots, t\}$, $y_i = F_K(m_i \oplus y_{i-1})$. Output y_t .	
	None of the above.	
(c) In v	which of the following groups is squaring guaranteed to be a permutation?	[5 pts]
	\mathbb{QR}_p^* where p is a prime number such that $2p + 1$ is also prime.	
	\mathbb{QR}_p^* where p is a prime number such that $(p-1)/2$ is odd.	
	\mathbb{QR}_n^* where $n = pq$, where p, q are primes such that either $p \equiv 3 \pmod{4}$ or $q \equiv 3 \pmod{4}$ (or both)	
	None of the above.	
(d) Sup	ppose $n = pq$, where p , q are distinct prime numbers. Let φ denote the Euler's totient function. Then:	[5 pts]
	$arphi(n) = \mathbb{Z}_n $	
	$arphi(n) = \mathbb{Z}_n^* $	
	$\varphi(n) = (pq-1)/2$	
	$\varphi(n) = (p-1)(q-1)$	
	None of the above.	
(e) In ti and	he El Gamal encryption scheme, the public-key consists of the specification of a cyclic group \mathbb{G} , a gener l an element $Y \in \mathbb{G}$.	ator $g \in \mathbb{G}$

Then, the ciphertext for a message $M \in \mathbb{G}$, using randomness $r \in$

is ______.