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Our first encounter with secrecy:

Secret-Sharing

Lecture 1



Secrecy

Cryptography is all about 
“controlling access to 
information”


Access to learning and/or 
influencing information


One of the aspects of 
access control is secrecy



A Game

A “dealer” and two “players” Alice and Bob


Dealer has a message, say two bits m1m2


She wants to “share” it among the two players so that 
neither player by herself/himself learns anything about the 
message, but together they can find it


Bad idea: Give m1 to Alice and m2 to Bob


Other ideas?



Sharing a bit
To share a bit m, Dealer picks a uniformly random bit b and gives 
a := m⊕b to Alice and b to Bob


Bob learns nothing (b is a random bit)


Alice learns nothing either: for each possible value of m (0 or 
1), a is a random bit (0 w.p. ½, 1 w.p. ½)


Her view is independent of the message


Together they can recover m as a⊕b


Multiple bits can be shared independently: as, m1m2 = a1a2⊕b1b2


Note: any one share can be chosen before knowing the message 
[why?]

m = 0 → (a,b) = (0,0) or (1,1)

m = 1  → (a,b) = (1,0) or (0,1)



Is the message m really secret?


Alice or Bob can correctly find the bit m with probability ½, by 

randomly guessing


Worse, if they already know something about m, they can do 
better (Note: we didn’t say m is uniformly random!)


But they could have done this without obtaining the shares


The shares didn’t leak any additional information to either party


Typical crypto goal: preserving secrecy

Secrecy



Goal: What Alice (or Bob) knows about the message after seeing 
her share is the same as what she knew a priori


What she knows about the message a priori: probability 
distribution over the message


For each message m, Pr[msg=m]


What she knows after seeing her share (a.k.a. her view)


Say view is v. Then new distribution: Pr[msg=m | view=v]


Secrecy: ∀ v, ∀ m, Pr[msg=m | view = v] = Pr[msg = m]


i.e., view is independent of message


Equivalently, ∀ v, ∀ m, Pr[view=v | msg=m] = Pr[view = v]

Secrecy

Determined by the scheme



Secrecy: ∀ v, ∀ m, Pr[msg=m | view = v] = Pr[msg = m]


i.e., view is independent of message


Equivalently, ∀ v, ∀ m, Pr[view=v | msg=m] = Pr[view = v]


i.e., for all possible values of the message,  
the view is distributed the same way


Equivalently (why?), ∀ v, ∀m1, m2,  
Pr[view=v | msg=m1] = Pr[view=v | msg=m2]


Important: can’t say Pr[msg=m1 | view=v] = Pr[msg=m2 | view=v] 
(unless the prior is uniform)

Secrecy

Doesn’t involve message 
distribution at all.



Consider the following secret-sharing scheme


Message space = { buy, sell, wait }


buy  → (00,00), (01,01), (10,10) or (11,11) w/ prob 1/4 each


sell  → (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each


wait → (00,10), (01,11), (10,00), (11,01), (00,11), (01,10), (10,01) or 
(11,00) w/ prob 1/8 each


Reconstruction: Let β1β2 = shareAlice ⊕ shareBob. Map β1β2 as 
follows: 00 → buy, 01 → sell, 10 or 11 → wait


Is it secure?

Exercise



Secret-Sharing
More general secret-sharing


Allow more than two parties (how?)


Privileged subsets of parties should be able to reconstruct 
the secret (not necessarily just the entire set of parties)


Very useful


Direct applications (distributed storage of data or keys)


Important component in other cryptographic constructions

Amplifying secrecy of various primitives

Secure multi-party computation

Attribute-Based Encryption

Leakage resilience ...



Threshold Secret-Sharing

(n,t)-secret-sharing


Divide a message m into n shares s1,...,sn, such that 


any t shares are enough to reconstruct the secret


up to t-1 shares should have no information about the 
secret


our previous example: (2,2) secret-sharing
e.g., (s1,…,st-1) has the same 
distribution for every m in  

the message space



Threshold Secret-Sharing
Construction: (n,n) secret-sharing


Message-space = share-space = G, a finite group

e.g. G = Z2 (group of bits, with xor as the group operation)


or, G = Z2 d (group of d-bit strings)


or, G = Zp (group of integers mod p)


Share(M):


Pick s1,...,sn-1 uniformly at random from G


Let sn = - (s1 + ... + sn-1) + M


Reconstruct(s1,...,sn): M = s1 + ... + sn


Claim: This is an (n,n) secret-sharing scheme [Why?]

Additive 
Secret-Sharing



 Additive Secret-Sharing: Proof

Share(M):

Pick s1,...,sn-1 uniformly at random from G

Let sn = M - (s1 + ... + sn-1) 


Reconstruct(s1,...,sn): M = s1 + ... + sn


Claim: Upto n-1 shares give no information about M


Proof:  Let T ⊆ {1,...,n}, |T| = n-1. We shall show that { si }i∈T is distributed 
the same way (in fact, uniformly) irrespective of what M is.


For concreteness consider T = {2,...,n}. Fix any (n-1)-tuple of elements in 
G, (g1,...,gn-1) ∈ Gn-1. To prove Pr[ (s2,...,sn)=(g1,...,gn-1) ] is same for all M.

Fix any M.

(s2,...,sn) = (g1,...,gn-1) ⇔ (s2,...,sn-1) = (g1,...,gn-2) and s1 = M-(g1+...+gn-1).


So Pr[ (s2,...,sn)=(g1,...,gn-1) ] = Pr[ (s1,…,sn-1)=(a,g1,…,gn-2) ], a:=(M-(g1+…+gn-1)

But Pr[(s1,…,sn-1)=(a,g1,...,gn-2)] = 1/|G|n-1, since (s1,...,sn-1) are picked 
uniformly at random from G

Hence Pr[ (s2,...,sn)=(g1,...,gn-1) ] = 1/|G|n-1, irrespective of M.  													□

PR
OO

F



An Application

Secure against passive corruption (no colluding set of 
servers/clients will learn more than what they must) if 
at least one server stays out of the collusion

Gives a “private summation” protocol

Share

Add

Add

Clients with inputs

Client with output

Servers



Threshold Secret-Sharing
Construction: (n,2) secret-sharing


Message-space = share-space = F, a field (e.g. integers mod a prime)


Share(M): pick random r. Let si = r⋅ai + M (for i=1,...,n < |F|)


Reconstruct(si, sj): r = (si-sj)/(ai-aj); M = si - r⋅ai


Each si by itself is uniformly distributed,  
irrespective of M  [Why?]


“Geometric” interpretation


Sharing picks a random “line” y = f(x),  
such that f(0)=M. Shares si = f(ai). 


si is independent of M: exactly one line passing  
through (ai,si) and (0,M’) for any secret M’


But can reconstruct the line from two points!
0 1 2 3 4 5 6

ai are n distinct,  
non-zero field elements

Since ai-1 exists, exactly one 
solution for r⋅ai+M=d, for 

every value of d



(n,2) Secret-Sharing: Proof

Share(M): pick random r ← F. Let si = r⋅ai + M (for i=1,...,n < |F|)


Reconstruct(si, sj): r = (si-sj)/(ai-aj); M = si - r⋅ai


Claim: Any one share gives no information about M


Proof:  For any i∈{1,..,n} we shall show that si is distributed the same way 
(in fact, uniformly) irrespective of what M is.

Consider any g∈F. We shall show that Pr[ si=g ] is independent of M.

Fix any M.

For any g ∈ F,  si = g ⇔  r⋅i + M = g ⇔ r = (g-M)⋅ai-1 (since ai≠0)


So, Pr[ si=g ] = Pr[ r=(g-M)⋅ai-1 ] = 1/|F|, since r is chosen uniformly at 
random                                                                           	□

PR
OO

F



Threshold Secret-Sharing

(n,t) secret-sharing in a field F


Generalizing the geometric/algebraic view: instead of lines, use 
polynomials


Share(m): Pick a random degree t-1 polynomial f(X), such that 
f(0)=M. Shares are si = f(ai).


Random polynomial with f(0)=M: c0 + c1X + c2X2 +...+ ct-1Xt-1 by 
picking c0=M and c1,...,ct-1 at random.


Reconstruct(s1,...,st): Lagrange interpolation to find M=c0 


Need t points to reconstruct the polynomial. Given t-1 points, 
out of |F|t-1 polynomials passing through (0,M’) (for any M’) 
there is exactly one that passes through the t-1 points

Shamir Secret-Sharing



Lagrange Interpolation

Given t distinct points on a degree t-1 polynomial (univariate, over 
some field of more than t elements), reconstruct the entire 
polynomial (i.e., find all t co-efficients)


t variables: c0,...,ct-1. t equations: 1.c0 + ai.c1 + ai2.c2 + ... ait-1.ct-1 = si


A linear system: Wc=s, where W is a txt matrix with ith row,  
Wi= (1 ai ai2 ... ait-1)


W (called the Vandermonde matrix) is invertible


c = W-1s



Today

Secrecy: if view is independent of the message


i.e., ∀ view, ∀ msg1,msg2, Pr[view | msg1] = Pr[view | msg2]


View does not give any additional information about the 
message, than what was already known (prior)


Secrecy holds even against unbounded computational power


Such secrecy not always possible (e.g., no public-key encryption 
against computationally unbounded adversaries)


