Defining Encryption (ctd.)

Lecture 3
SIM & IND security
Beyond One-Time: CPA security
Computational Indistinguishability

Onetime Encryption

Perfect Secrecy

- Perfect secrecy: ∀ m, m' ∈ M
 - $\{Enc(m,K)\}_{K\leftarrow KeyGen} = \{Enc(m',K)\}_{K\leftarrow KeyGen}$
- Distribution of the ciphertext is defined by the randomness in the key
- In addition, require correctness
 - ∀ m, K, Dec(Enc(m,K), K) = m
- E.g. One-time pad: $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^n$ and Enc(m,K) = m⊕K, Dec(c,K) = c⊕K
 - Samuel Mark Mark, Dec(c,K) = $C \oplus K$ More generally $\mathcal{M} = \mathcal{K} = C = \mathcal{C}$ (a finite group)

 and Enc(m,K) = m+K, Dec(c,K) = c-K

M K	0	1	2	3
а	×	У	У	Z
b	У	X	Z	У

Assuming K uniformly drawn from ${\mathscr K}$

Pr[Enc(a,K)=x] =
$$\frac{1}{4}$$
,
Pr[Enc(a,K)=y] = $\frac{1}{2}$,

Pr[Enc(a,K)=z] = $\frac{1}{4}$

Same for Enc(b,K).

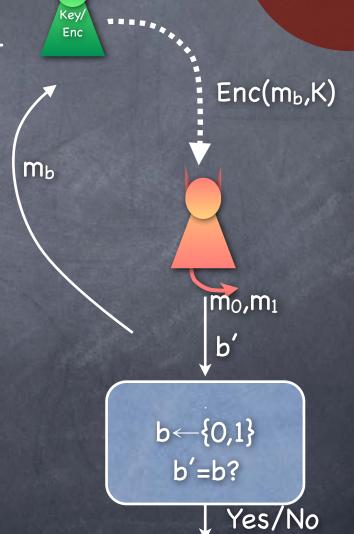
Recall

Onetime Encryption

IND-Onetime Security

- IND-Onetime Experiment
 - Experiment picks a random bit b. It also runs KeyGen to get a key K
 - \bullet Adversary sends two messages m_0 , m_1 to the experiment
 - Experiment replies with Enc(mb,K)
 - Adversary returns a guess b'
 - Experiments outputs 1 iff b'=b
- IND-Onetime secure if for every adversary, Pr[b'=b] = 1/2

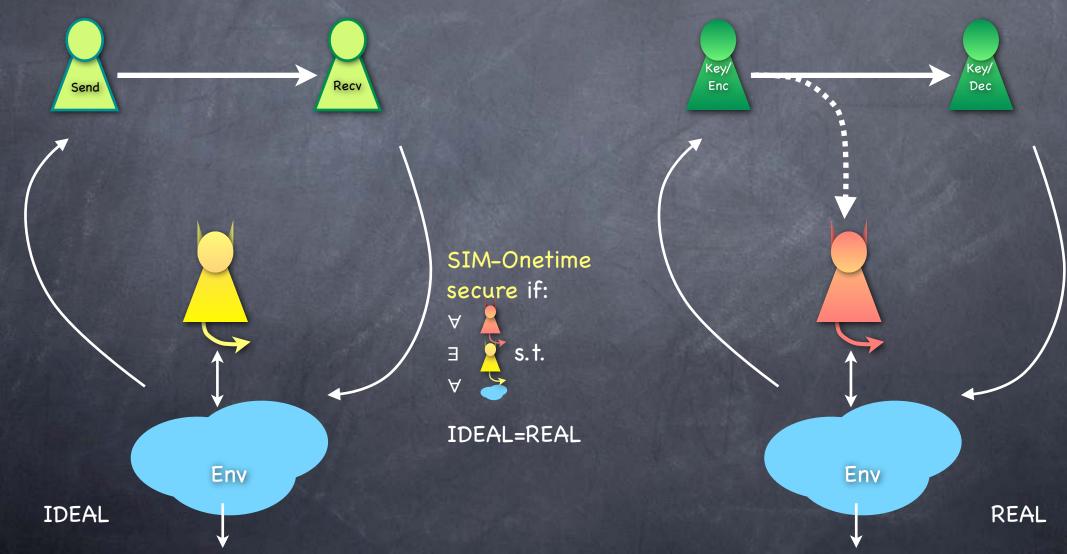
Equivalent to perfect secrecy



Recall

Onetime Encryption Equivalent to SIM-Onetime Security Equivalent to perfect secrecy + correctness

Class of environments which send only one message



Security of Encryption

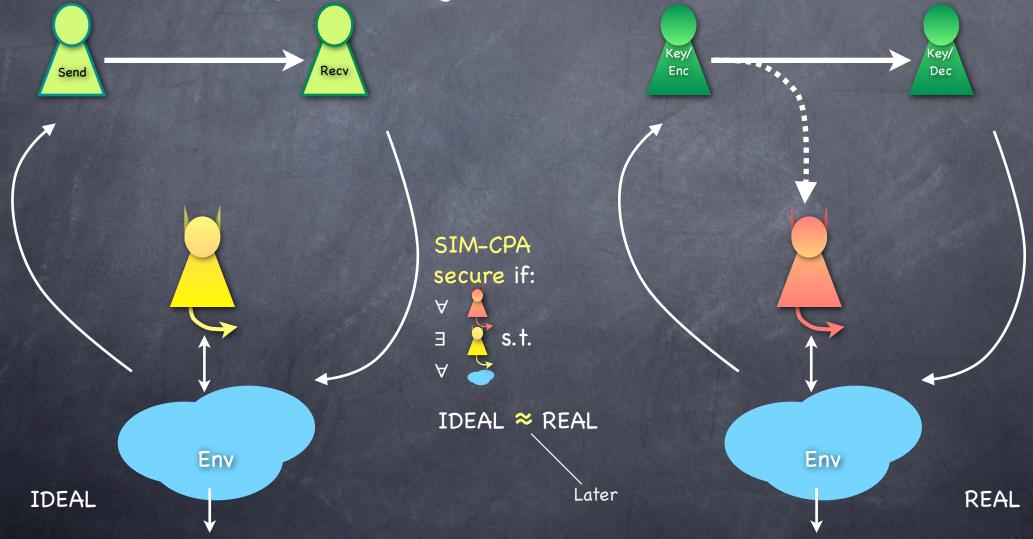
- Perfect secrecy is too strong for multiple messages (though too weak in some other respects...)
 - Requires keys as long as the messages
- Relax the requirement by restricting to computationally bounded adversaries (and environments)
- Coming up: Formalizing notions of "computational" security (as opposed to perfect/statistical security)
 - Then, security definitions used for encryption of multiple messages

Symmetric-Key Encryption The Syntax

- Shared-key (Private-key) Encryption
 - Key Generation: Randomized
 - \bullet K \leftarrow % , uniformly randomly drawn from the key-space (or according to a key-distribution)
 - Encryption: Randomized
 - Enc: $\mathcal{M} \times \mathcal{K} \times \mathcal{R} \to \mathcal{C}$. During encryption a fresh random string will be chosen uniformly at random from \mathcal{R}
 - Decryption: Deterministic
 - Dec: $C \times \mathcal{K} \rightarrow \mathcal{M}$

Symmetric-Key Encryption SIM-CPA Security

Same as SIM-onetime security, but not restricted to environments which send only one message. All entities "efficient."



Symmetric-Key Encryption

IND-CPA Security

Experiment picks a random bit b. It also runs KeyGen to get a key K

- For as long as Adversary wants
 - Adv sends two messages m₀, m₁ to the experiment
 - Expt returns Enc(m_b,K) to the adversary
- Adversary returns a guess b'
- Experiment outputs 1 iff b'=b
- IND-CPA secure if for all "efficient" adversaries Pr[b'=b] ≈ 1/2

IND-CPA + ~correctness equivalent to Key SIM-CPA Enc Enc(mb,K) Mb m_0, m_1 b ← {0,1} b'=b?

Definitions Summary

- Security definitions:
 - SIM-Onetime = IND-Onetime/Perfect Secrecy + correctness
 - SIM-CPA = IND-CPA + ~correctness: allows using the same key for multiple messages
 - Later: SIM-CCA = IND-CCA + ~correctness: allows active attacks
- Next
 - For multi-message schemes we relaxed the "perfect" simulation requirement
 - But what is ≈ ?

Feasible Computation

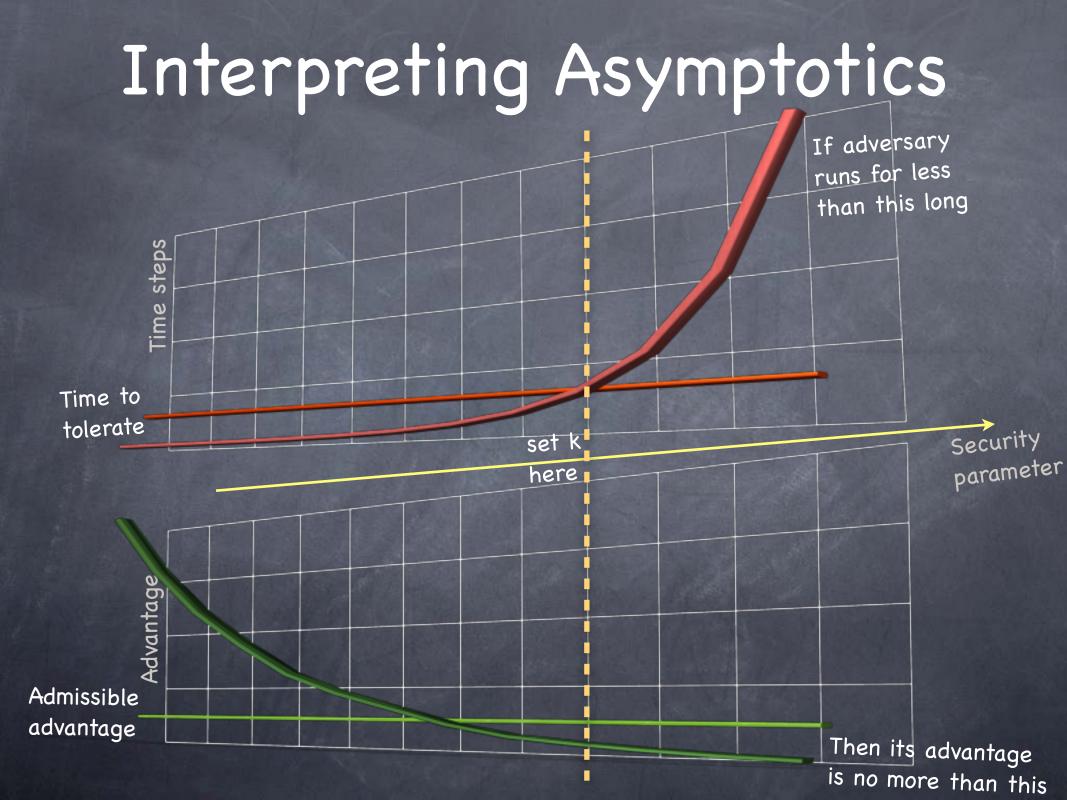
- In analyzing complexity of algorithms: Rate at which computational complexity grows with input size
 - e.g. Can do sorting in O(n log n)
- Only the rough rate considered
 - Exact time depends on the technology
 - Real question: Do we scale well? How much more computation will be needed as the instances of the problem get larger.
 - "Polynomial time" (O(n), O(n²), O(n³), ...) considered feasible

Infeasible Computation

- "Super-Polynomial time" considered infeasible
 - e.g. 2ⁿ, 2√n, n^{log(n)}
 - o i.e., as n grows, quickly becomes "infeasibly large"
- Can we make breaking security infeasible for Eve?
 - What is n (that can grow)?
 - Message size?
 - We need security even if sending only one bit!

Security Parameter

- A parameter that is part of the encryption scheme
 - Not related to message size
 - A knob that can be used to set the security level
 - Will denote by k
- Security guarantees are given <u>asymptotically</u> as a function of the security parameter



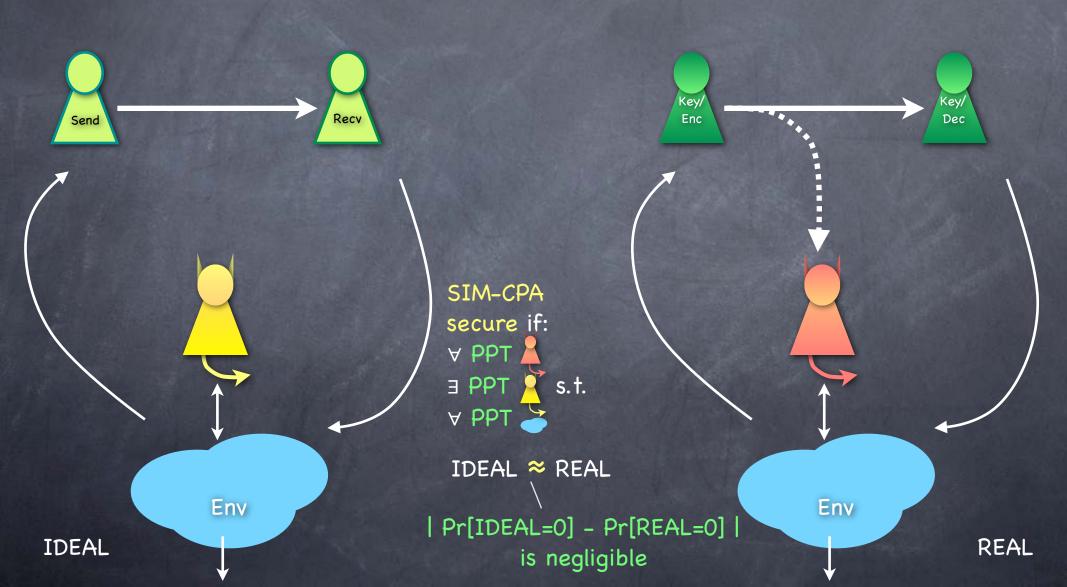
Feasible and Negligible

- We want to tolerate Eves who have a running time bounded by some polynomial in k
 - Eve could toss coins: Probabilistic Polynomial-Time (PPT)
 - It is better that we allow Eve high polynomial times too (we'll typically tolerate some super-polynomial time for Eve)
 - But algorithms for Alice/Bob better be very efficient
 - Eve could be non-uniform: a different strategy for each k
- Such an Eve should have only a "negligible" advantage (or, should cause at most a "negligible" difference in the behavior of the environment in the SIM definition)
 - What is negligible?

Negligibly Small

- A negligible quantity: As we turn the knob the quantity should "decrease extremely fast"
 - Negligible: decreases as 1/superpoly(k)
 - o i.e., faster than 1/poly(k) for every polynomial
 - e.q.: 2-k, 2-√k, k-(log k).
 - Formally: T negligible if $\forall c>0$ ∃k₀ $\forall k>k_0$ T(k) < 1/k^c
 - So that $negl(k) \times poly(k) = negl'(k)$
 - Needed, because Eve can often increase advantage polynomially by spending that much more time/by seeing that many more messages

Symmetric-Key Encryption SIM-CPA Security



Next

- Constructing (CPA-secure) SKE schemes
 - Pseudorandomness Generator (PRG)
 - One-Way Functions (& OW Permutations)
 - OWP → PRG → (CPA-secure) SKE