Active Adversary

Lecture 7
CCA Security
MAC

Active Adversary

@ An active adversary can inject messages into the channel
@ Eve can send ciphertexts to Bob and get them decrypted
@ Chosen Ciphertext Attack (CCA)

@ If Bob decrypts all ciphertexts for Eve, no security
possible

@ What can Bob do?

Symmeftric-Key Encryption
SIM-CCA Security

{ Authentication not required. Adversary allowed}

to send own messages (possibly “error”)

Replay
SIM-CCA Filter

secure if:

v
-
v &
3 L st ‘
5

REAL = IDEAL
¢ REAL

IDEAL

SymmefriC-Key Encryp-' JIND=CCA +

correctness

IND-CCA SeCurify equivalent to

SIM-CCA
Experi ' = &
@ Experiment picks b<—{0,1} and K<—KeyGen Enc(mb,K) w

Adv gets (guarded) access to Decx oracle je ..., ke
@ For as long as Adversary wants

@ Adv sends two messages mp, m;
to the experiment

Replay Filter:

s . No challenge
@ Expt returns Enc(mp,K) to the : ciphertext

adversary

@ Adversary returns a guess b’

@ Experiments outputs 1 iff b'=b

@ IND-CCA secure if for all feasible
adversaries Pr[b’=b] =~ 1/2 lYes/No

CCA Security

How to obtain CCA security?

Use a CPA-secure encryption scheme, but make sure Bob
“accepts” and decrypts only ciphertexts produced by Alice

@ i.e., Eve cant create new ciphertexts that will be
accepted by Bob

@ Achieves the stronger quarantee: in IDEAL, Eve can't
send its own messages to Bob

CCA secure SKE reduces to the problem of CPA secure SKE
and (shared key) message authentication

@ MAC: Message Authentication Code

o

Message Authentication

Codes

A single short key shared by Alice and Bob

@ Can sign any (polynomial) number of
messages

A triple (KeyGen, MAC, Verify)

Correctness: For all K from KeyGen, and all
messages M, Verifyk(M,MACk(M))=1

Security: probability that an adversary can
produce (M,s) s.t. Verifyk(M,s)=1 is negligible
unless Alice produced an output s=MACk(M)

>/ VerK(M s)
(M,s)

Advan’rage
= Pr[Verk(M,s)=1 and
(M,s) ¢ (M)}]

CCA Secure SKE

@ CCA-Enckikz(m) = (c:= CPA-Encki(m), t:= MACk2(c))
@ CPA secure encryption: Block-cipher/CTR mode construction

@ MAC: from a PRF or Block-Cipher (coming up)

@ SKE can be entirely based on Block-Ciphers
@ A tool that can make things faster: Hash functions (later)

@ In principle, PRFs can be constructed (less efficiently) based
on any One-Way Permutation or even any One-Way Function

One-time MAC

@ To sign a single n bit message

@ A simple (but inefficient) scheme

@ Shared secret key: 2n random
strings (each k-bit long) (r'o,r't)i-1.n

@ Signature for my..m, be (Fmi)i-1.n

@ Negligible probability that Eve can produce
a signature on m’#m rr | ora |

@ Doesnt require any computational restrictions on adversary!

@ More efficient one-time MACs exist (later)

(Multi-msg) MAC from PRF

When Each Message is a Single Block

@ PRF is a MAC!
a MACK(M) = FK(N\) where F is a PRF ‘

@ Verk(M,S) := 1 iff S=Fx(M) N\N\)
| F
@ Output length of Fx should be big enough -
@ If an adversary forges MAC with probability emac,

then can break PRF with advantage O(smac — 2-™%)

(m(k) being the ou’rpu’r leng’rh of the pRF) [HOW?] Y Recall: Advantage in)

breaking a PRF F =

@ If random function R used as MAC, then diff in prob test has
probability of Forgery, emact = 2-MK) of o.u’rpu’r’rmg 1, when

given F vs. truly

L random R)

MAC for
Multiple-Block Messages

@ What if message is longer than one block?

@ MAC'ing each block separately is not secure (unlike
in the case of CPA secure encryption)

@ Eve can rearrange the blocks/drop some blocks

@ Use a PRF that takes longer inputs?

@ Would like to use a PRF with a fixed block-length
(i.e., a block cipher)

MAC for
Multiple-Block Messages

@ A simple solution: “tie the blocks together”

@ Add to each block a random string r (same r for all blocks),
total number of blocks, and a sequence number

@ Bi=(rti M)
@ MAC(M) = (r, (MAC(B))i-1.t)

@ r prevents mixing blocks from two messages, t prevents
dropping blocks and i prevents rearranging

@ Inefficient! Tag length increases with message length

CBC-MAC

@ PRF domain extension: Chaining the blocks

@ cf. CBC mode for encryption (which
is not a MAC!)

@ t-block messages, a single block tag

@ Can be shown to be secure

@ If restricted to t-block messages (i.e., same length)

|

Fk

| B

@ Else attacks possible (by extending a previously

signed message)

Patching CBC-MAC

@ Patching CBC MAC to handle message of any (polynomial) length
but still producing a single block tag (secure if block-cipher is):

@ Derive K as Fx(t), where t is the number of blocks
@ Use first block to specify number of blocks

@ Important that first block is used: if last block, message
extension attacks still possible

@ EMAC: Output not the last tag T, but Fx(T), where K’ is an
independent key (after padding the message to an integral
number of blocks). No need to know message length a priori.

@ CMAC: XOR last message block with a key (derived from the
original key using the block-cipher). Also avoids padding when
message IS infegral number of blocks. <(NIST Recommendation. 2005)

@ Later: Hash-based HMAC used in TLS and IPSec <(IETF Standard. 1997)

