Public-Key Cryptography

Lecture 9 Public-Key Encryption Diffie-Hellman Key-Exchange Shared/Symmetric-Key Encryption (a.k.a. private-key encryption)

PKE scheme

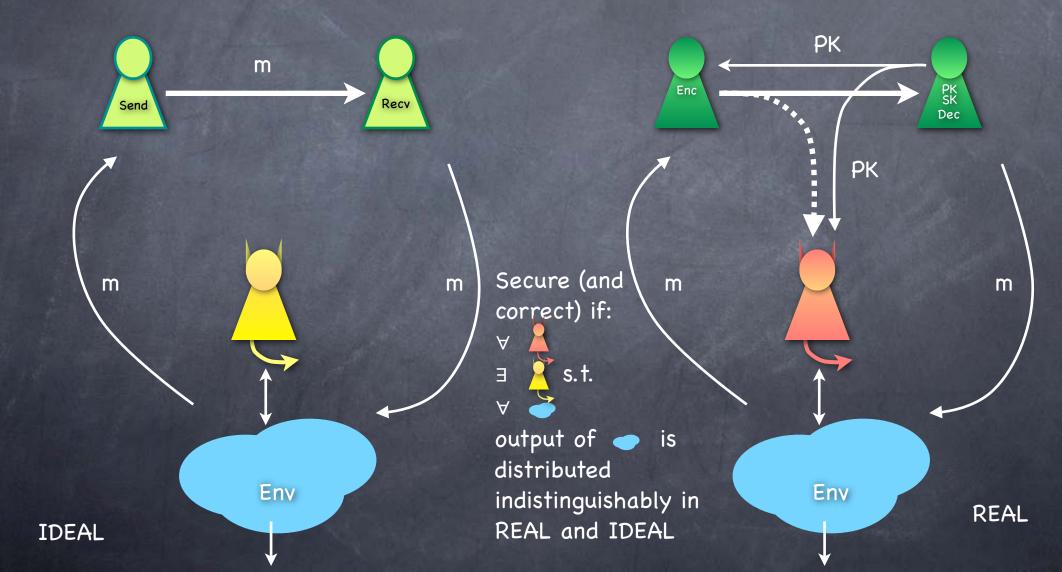
SKE:

- Syntax
 - KeyGen outputs $K \leftarrow \mathcal{K}$
 - Enc: $\mathcal{M} \times \mathcal{K} \times \mathcal{R} \rightarrow \mathcal{C}$
 - Dec: $C \times \mathcal{K} \rightarrow \mathcal{M}$

Correctness
∀K ∈ Range(KeyGen), Dec(Enc(m,K), K) = m
Security (SIM/IND-CPA)

a.k.a. asymmetric-key encryption @ PKE < Syntax KeyGen outputs $(\mathsf{PK},\mathsf{SK}) \leftarrow \mathcal{PK} \times \mathcal{SK}$ • Dec: $C \times S \ll M$ Correctness Ø \forall (PK,SK) ∈ Range(KeyGen), Dec(Enc(m, PK), SK) = m Security (SIM/IND-CPA, PKE version)

SIM-CPA (PKE Version)



IND-CPA (SKE version)

Experiment picks a random bit b. It also 0 runs KeyGen to get a key K

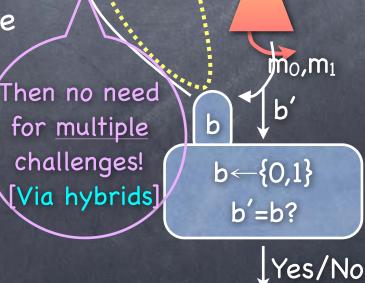
For as long as Adversary wants

Adv sends two messages m₀, m₁ to the experiment

Expt returns Enc(mb,K) to the adversary

Adversary returns a guess b' Experiment outputs 1 iff b'=b

IND-CPA secure if for all PPT adversaries $\Pr[b'=b] - 1/2 \le v(k)$



Key/ Enc

Mb

Can give Adv

·(··.(direct) oracle access to

Enc(m_b,K)

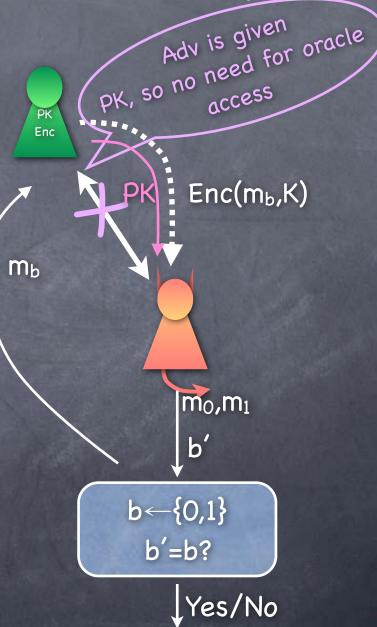
IND-CPA (SKE version)

Experiment picks a random bit b. It also runs KeyGen to get a key (PK,SK). Adv given PK

 Adv sends two messages m₀, m₁ to the experiment

 Expt returns Enc(mb,K) to the adversary

Adversary returns a guess b'
Experiment outputs 1 iff b'=b
IND-CPA secure if for all PPT adversaries Pr[b'=b] - 1/2 ≤ v(k)



IND-CPA (PKE versio

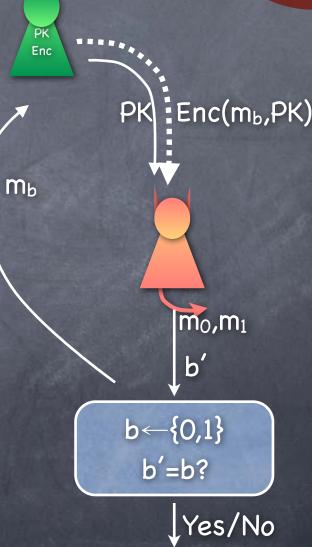
IND-CPA + ~correctness equivalent to SIM-CPA

Experiment picks a random bit b. It also runs KeyGen to get a key (PK,SK). Adv given PK

 Adv sends two messages m₀, m₁ to the experiment

 Expt returns Enc(mb,K) to the adversary

Adversary returns a guess b'
Experiment outputs 1 iff b'=b
IND-CPA secure if for all PPT adversaries Pr[b'=b] - 1/2 ≤ v(k)



Perfect Secrecy?

No perfectly secret and correct PKE (even for one-time encryption)

- Public-key and ciphertext (the total shared information between Alice and Bob at the end) should together have entire information about the message
 - Intuition: If Eve thinks Bob could decrypt it as two messages based on different SKs, Alice should be concerned too

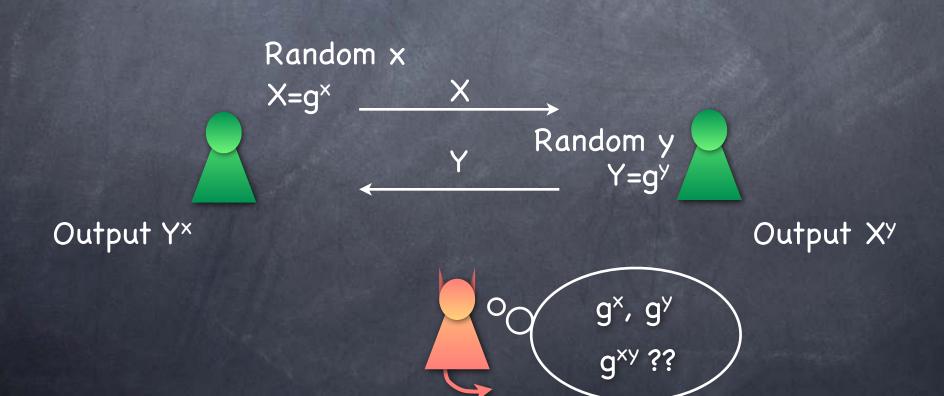
eavesdr

- i.e., Alice conveys same information to Bob and Eve
- [Exercise]

PKE only with computational security

Diffie-Hellman Key-exchange

A candidate for how Alice and Bob could generate a shared key, which is "hidden" from Eve



Why DH-Key-exchange could be secure

Given g^x, g^y for random x, y, g^{xy} should be "hidden"
i.e., could still be used as a pseudorandom element
i.e., (g^x, g^y, g^{xy}) ≈ (g^x, g^y, R)
Is that reasonable to expect?
Depends on the "group"

Groups, by examples

- A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative
- Examples: Z = (integers, +) (this is an infinite group),
 Z_N = (integers modulo N, + mod N),
 Gⁿ = (Cartesian product of a group G, coordinate-wise operation)
 Order of a group G: |G| = number of elements in G
 For any a∈G, a^{|G|} = a * a * ... * a (|G| times) = identity

qN-2

- Finite Cyclic group (in multiplicative notation): there is one element g such that G = {g⁰, g¹, g², ... g^{|G|-1}}
 - Prototype: \mathbb{Z}_N (additive group), with g=1
 - or any g s.t. gcd(g,N) = 1

Groups, by examples

- Numbers in {1,..,N-1} which have a multiplicative inverse mod N
- If N is prime, \mathbb{Z}_N^* is a cyclic group, of order N-1
 - e.g. Z₅^{*} = {1,2,3,4} is generated by 2 (as 1,2,4,3), and by 3 (as 1,3,4,2). But 1 and 4 are not generators.
 - (Also cyclic for certain other values of N)

Discrete Log Assumption Repeated squaring

- Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by g: DL_g(X) := unique x such that X = g[×] (x ∈ {0,1,...,|G|-1})
- In a (computationally efficient) group, given integer x and the standard representation of a group element g, can efficiently find the standard representation of X=g[×] (How?)
 - But given X and g, may not be easy to find x (depending on G)
 - DLA: Every PPT Adv has negligible success probability in the
 <u>DL Expt</u>: (G,g)←GroupGen; X←G; Adv(G,g,X)→z; g^z=X?
 OWF collection:
 OUF collection:
 OWF collection:
 OUF collection
- If DLA broken, then Diffie-Hellman key-exchange broken
 Raise(x;G,g) = (g^x;G,g)
 Eve gets x, y from g^x, g^y (sometimes) and can compute g^{xy} herself
 A "key-recovery" attack
 - Note: could potentially break pseudorandomness without breaking
 DLA too

Decisional Diffie-Hellman (DDH) Assumption

{(g^x, g^y, g^{xy})}(G,g)←GroupGen; x,y←[IGI] ≈ {(g^x, g^y, g^r)}(G,g)←GroupGen; x,y,r←[IGI]
At least as strong as DLA
If DDH assumption holds, then DLA holds [Why?]
But possible that DLA holds and DDH assumption doesn't
e.g.: DLA is widely assumed to hold in Z_p* (p prime), but DDH assumption doesn't hold there!
Next time