Public-Key Cryptography

Lecture 10
DDH Assumption
El Gamal Encryption
Public-Key Encryption from Trapdoor OWP



Diffie-Hellman
Key-exchange

@ “Secure” under DDH: (g*,g*,g*) = (g%,g%,9")

Random xe {0,..,|G|-1} Random ye {0,..,|G|-1}
X=g* X Y=g’
>
A Y -
<€
Output Y* Output XY



Decisional Diffie-Hellman
(DDH) Assumption

g%, 97, 9)}(G.g)—GroupGen; xy=Ticll = ", 9%, 9")}(G.g)—GroupGen; xy.r—llGl]
At least as strong as Discrete Log Assumption (DLA)

@ DLA: Raise(x; G,g) = (g%; G,g) is a OWF collection

@ If DDH assumption holds, then DLA holds [\Why?]

But possible that DLA holds and DDH assumption doesn’t

a e.g.: DLA is widely assumed to hold in Z, (p prime), but DDH
assumption doesnt hold there!

Do we have a candidate group for DDH?



A Candidate DDH Group

a Consider @QRp" : subgroup of Quadra’rlc Residues

(“even power” elements) of Z

@ Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

a DDH does not hold in Zp" : g¥ is a QR w/ prob 3/4;

g® is QR only w/ prob. 1/2. DDH Candlda’re

@ How about in QRp? QRp
where P is a safe-prime

%

@ Could check if cubic residue in Zp'!

@ But if (P-1) is not divisible by 3, all elements in Z
are cubic residues!

@ "Safe” if (P-1)/2 is also prime: P called a safe-prime



El Gamal Encryption

Random vy
< Y=g’
@ Based on DH key-exchange Random x
X
: o X=g A A
@ All.ce, Bob generate a key - KXY
using DH key-exchange i / <
M=CK-!

@ Then use it as a one-time pad

KeyGen: PK=(G,q,Y), SK=(G,g,y)
Enc(G,g,Y)(M) = (X=gx, C=N\Yx)
Dec(G,gy)(X,C) = CX

@ Bobs “message” in the key-
exchange is his PK

@ Alices message in the key-
exchange and the ciphertext of |® Key@en uses GroupGen fo gef (Gg)
® X, Yy uniform from Zg

the one-time Pad 1-Ogeﬂ“er form ® Message encoded into group element, and
a single ciphertext decoded




Security of El Gamal

@ E|l Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A* given an IND-CPA adversary A

o A(G,g; g5,9”.9%) (where (G,g) < GroupGen, X,y random and
z=xy or random) plays the IND-CPA experiment with A:

@ But sets PK=(G,g,g9”) and Enc(My)=(g*,Msg?)
@ Outputs 1 if experiment outputs 1 (i.e. if b=b’)
@ When z=random, A* outputs 1 with probability = 1/2

@ When z=xy, exactly IND-CPA experiment: A* outputs 1 with
probability = 1/2 + advantage of A.



Abstracting El Gamal

@ Trapdoor PRG: v Random v
< Y=qa’
@ KeyGen: a pair (PK,SK) Random x : :

@ Three functions: Ge«(.) (a PRG) SHES A
and Tpek(.) (make trapdoor info) S z K=XY

C=MK >

and Rsk(.) (opening the trapdoor) i

@ Gpk(x) is pseudorandom even

given Te(x) and PK KeyGen: PK=(G,g,Y), SK=(G,g.y)

Encg (M) = (X=g%, C=MYX)

o (PK,Tex(x),Grr(x)) = (PK,Tek(x),r) Dec(say(X,C) = CX

@ Tek(x) hides Gpk(x). SK opens it.
o Rex(Tex(x)) SEGEUE) KeyGen: (PK,SK)

E M) = (X=Tpk(x), C=M.G
@ Enough for an IND-CPA secure PKE nepdiilisgnsTox(x) er(x))
scheme (e.g., Security of El Gamal) Decsk(X,C) = C/Rsk(Tex(x))



Trapdoor PRG from
Generic Assumpfioﬁ

KeyGen

@ PRG constructed from OWP (or OWF)

PK SK
@ Allows us to instantiate the
e gty v R
—

construction with several

candidates
Z y4
@ Is there a similar construction for l l

B e (PK, Tex(x),Gox(x) = (PK,Tox(x),1)
@ Trapdoor property seems

fundamentally different: generic
OWP does not suffice

@ Will start with “Trapdoor OWP”



Trapdoor OWP

o (KeyGen,f,f’) (all PPT) is a trapdoor one- ‘
way permutation if FPK(X)?/
@ For all (PK,SK) <KeyGen lx'
o f tati i R
pk @ permutation e
@ f'sk is the inverse of fpx ><<,—{0,1;"
X' = X
@ For all PPT adversary, probability of ¢ i

success in the Trapdoor OWP lYes/No
experiment is negligible



Trapdoor OWP

o (KeyGen,f,f’) (all PPT) is a trapdoor one- ‘
way permutation if FPK(X)?/
@ For all (PK,SK) <KeyGen lb'
o f tati i R
pk @ permutation e
@ f's is the inverse of fpx x<—{0,1}"
b’ = BpK(X)?
@ For all PPT adversary, probability of ¢ i

success in the Trapdoor OWP lYes/No
experiment is negligible

@ Hardcore predicate:

@ Bpk S.t. (PK,fpk(x),Bek(x)) = (PK,fek(x),r)



Trapdoor PRG from
Trapdoor OWP S

KeyGen

@ Same construction as PRG from OWP PK./ :SK
T ——

@ One bit Trapdoor PRG

@ KeyGen same as Trapdoor OWPS
KeyGen l “ lz
@ Gpk(x) := Bpk(x). Tex(x) := fex(x). (PK,Tex(x),Gex(x)) = (PK, Tex(x).r)
Rsk(y) := Gpk(f'sk(y)) (PK,fex(x).Bex(x)) = (PK, fox(x),r)
@ (SK assumed to contain PK) B el md | Gl N
@ More generally, last permutation = L= =

output serves as Tpx Gor(x)




Candidate Trapdoor OWPs

@ From some (candidate) OWP collections, with index as public-key
@ Recall candidate OWF collections

@ Rabin OWF: frain(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0...N-1})

@ Fact: fravin(.; N) is a permutation among quadratic residues,
when P, Q are = 3 (mod 4)
@ Fact: Can invert frapin(.; N) given factorization of N

@ RSA function: frsa(x; N,e) = x¢ mod N where N=PQ, PQ k-bit
primes, e s.t. gcd(e,¢(N)) = 1 (and x uniform from {0...N-1})

R
0@“%0 @ Fact: frsa(.; N,e) is a permutation
C

@ Fact: While picking (N,e), can also pick d s.t. x®d = x



%

AN

@ Group operation: “multiplication modulo N”
@ Has identity, is associative

@ Group elements: all numbers (mod N) which have a
multiplicative inverse modulo N

a e.qg.: Z¢ has elements {1,5}, Z; has {1,2,3,4,5,6}

@ a has a multiplicative inverse modulo N
@ < 3 integers b, ¢ s.t. ab = 1+cN

Extended

Euclidean algorithm to find (b,d)
given (a,N). Used to efficiently invert
elements in Z\*

@ < gcd(a,N)=1
o (=) gcd(a,N) | (ab-cN)
@ (<) from Euclids algorithm: 3 b, d s.t. gcd(a,N) = ab+dN
a | ZN'| = #integers in [1,N-1] co-prime with N = ¢(N)




5

5

4

Q

Z?_p*, P prime

Recall Zp
| Zo'| =: ©(P) = P-1 (all of them co-prime with P)
Cyclic: Isomorphic to Zp_

@ Has ¢(P-1) = |Zp1'| different generators

Discrete Log assumed to be hard

Quadratic Residues form a subgroup @QRp"

@ Candidate group for DDH assumption




5

N, N=PQ, two primes

e.g. Zis = {1,2,4,7,8,11,13,14}

@ ¢(15) = 8

A

Also works with

P, Q co-primes

Group operation and inverse efficiently computable

Cyclic?

o No' InZ;5, 24 = 42 =74 = 84 =112=134 = 142 = |
(i.e., each generates at most 4 elements, out of 8)

“Product of two cycles”: Z3 and Zs

@ Chinese Remainder Theorem



Chinese Remainder Theorem

45 43 ds
0 0 0
@ Consider mapping elements in Z;s (all 15 of 1 1 1
them) to Z3 and Zs 2 2 2
3 0 3
@ a+~ (a mod 3, a mod 5) 4 ] 4
@ CRT says that the pair (a mod 3, a mod 5) 2 e O
uniquely determines a (mod 15)! : (1) 12
@ All 15 possible pairs occur, once each 3 2 3
@ In general for N=PQ (P, Q relatively prime), 5 RNONTI 4
a ~ (a mod P, a mod Q) maps the N © : P
elements to the N distinct pairs R
@ In fact extends to product of more than 13 1 3
two (relatively prime) numbers 14 2 4




Chinese Remainder Theorem

and Zy [ JE
N 0 0 0

1 1 1

2 2 2

3 0 3

: 4 1 4

@ CRT representation of Zn: every element of Zy - ; z
can be written as a unique element of Zp x Zq | o 1

@ Addition can be done coordinate-wise ; ; :

@ (a,b) +mod Ny (@',b") = (@ +(mod ) @",b +(mod @) b) 9 0 4

@ CRT: Zy = Zp x Aq (group isomorphism) 10 1 0
11 2 1

12 0 2

13 1 3

14 2 4




Chinese Remainder Theorem

o Z Z Z
and EN 2 F—
Elements in Zx" L Poaindes
@ Elements in Zx > 5 5
@ Multiplication (and identity, and inverse)
also coordinate-wise 4 1 4
@ No multiplicative inverse iff (0,b) or (a,0)
o Else in Z\": i.e., (a,b) s.t. ac Zp", be g 7 1 2
. * s 8 2
@ AN = Ap %X 4qg
o o(N) = | Z\V'| = (P-1)(Q-1) (P#Q, primes) m s 1

@ Can efficiently compute the isomorphism (in

13

both directions) if P, Q known [Exercise] Yl O




RSA Function

@ frsanel(X) = x2 mod N

@ Where N=PQ, and gcd(e,o(N)) = 1 (i.e., e € Zyn) )
@ frsaiNe: 4N — AN

% Al’rerna’rely, FRSA[N,e]I EN* - EN

@ frsaine IS a permutation with a trapdoor (namely (N,d))

@ In fact, there exists d s.t. frsang] IS the inverse of frsa[Ne]
@ ds.t ed—l (mod %(N)), x¢¢ = x (mod N)
@ For ZN because order is ¢(N)
@ For ZN? By CRT, and because multiplication is coordinate-wise
(and it holds in Zp and Zqg. note: 024 = Q) [Exercise]



RSA Function

@ frsamel(X) = x° mod N
@ Where N=PQ, and gcd(e,o(N)) = 1 (i.e., e € Zyn) )

@ frsaNe: AN — 4N

*

% Al’rerna’rely, FRSA[N,e]I EN* - EN

) FRSA[N,e] IS a permuquion with a ‘|'I"Clpd00|" (namely (N,d))

@ RSA Assumption: frsaine is a OWF collection, when P, Q random
k-bit primes and e < N random number s.t. gcd(e,©(N))=1 (with
inputs uniformly from Zy or ZxN')

@ Alternate version: e=3, P, Q restricted so that gcd(3,5(N))=1
@ RSA Assumption will be false if one can factorize N
@ Then knows ©(N) and can find d=e™! in Z,n)

@ Converse not known to hold
@ Trapdoor OWP Candidate



