Public-Key Cryptography

Lecture 10 DDH Assumption El Gamal Encryption Public-Key Encryption from Trapdoor OWP

Diffie-Hellman Key-exchange

• "Secure" under DDH: $(g^{x},g^{x},g^{xy}) \approx (g^{x},g^{x},g^{r})$

Decisional Diffie-Hellman (DDH) Assumption

At least as strong as Discrete Log Assumption (DLA) • DLA: Raise(x; G,g) = $(g^x; G,g)$ is a OWF collection If DDH assumption holds, then DLA holds [Why?] But possible that DLA holds and DDH assumption doesn't • e.g.: DLA is widely assumed to hold in \mathbb{Z}_{p}^{*} (p prime), but DDH assumption doesn't hold there!

Do we have a candidate group for DDH?

A Candidate DDH Group

• Consider $Q \mathbb{R}_{P}^{*}$: subgroup of Quadratic Residues ("even power" elements) of \mathbb{Z}_{P}^{*}

 Easy to check if an element is a QR or not: check if raising to |G|/2 gives 1 (identity element)

DDH does not hold in \mathbb{Z}_{P}^{*} : g^{xy} is a QR w/ prob. 3/4; g^{z} is QR only w/ prob. 1/2.

• How about in QR_{P}^* ?

• Could check if cubic residue in $\mathbb{Z}_{P}^{*}!$

- But if (P-1) is not divisible by 3, all elements in \mathbb{Z}_P^* are cubic residues!
- Safe" if (P-1)/2 is also prime: P called a safe-prime

DDH Candidate: QRp* where P is a safe-prime

6

10

El Gamal Encryption

Based on DH key-exchange

 Alice, Bob generate a key using DH key-exchange

Then use it as a one-time pad

 Bob's "message" in the keyexchange is his PK

 Alice's message in the keyexchange and the ciphertext of the one-time pad together form a single ciphertext KeyGen: PK=(G,g,Y), SK=(G,g,y)Enc_(G,g,Y)(M) = (X=g^x, C=MY^x) Dec_(G,g,Y)(X,C) = CX^{-y}

X

Random y

Y=q^y

K=X^y

M=CK⁻¹

KeyGen uses GroupGen to get (G,g)

• x, y uniform from $\mathbb{Z}_{|G|}$

Random x

X=g[×]

K=Y[×]

C=MK

 Message encoded into group element, and decoded

Security of El Gamal

 El Gamal IND-CPA secure if DDH holds (for the collection of groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; g^x,g^y,g^z) (where (G,g) ← GroupGen, x,y random and z=xy or random) plays the IND-CPA experiment with A:

• But sets $PK=(G,g,g^{\gamma})$ and $Enc(M_b)=(g^{\chi},M_bg^z)$

Outputs 1 if experiment outputs 1 (i.e. if b=b')

• When z=random, A^{*} outputs 1 with probability = 1/2

When z=xy, exactly IND-CPA experiment: A* outputs 1 with probability = 1/2 + advantage of A.

Abstracting El Gamal

Trapdoor PRG:

- KeyGen: a pair (PK,SK)
- Three functions: G_{PK}(.) (a PRG) and T_{PK}(.) (make trapdoor info) and R_{SK}(.) (opening the trapdoor)
 - G_{PK}(x) is pseudorandom even
 given T_{PK}(x) and PK
 - (РК,Т_{РК}(х),G_{РК}(х)) ≈ (РК,Т_{РК}(х),r)
 Т_{РК}(х) hides G_{РК}(х). SK opens it.
 R_{SK}(Т_{РК}(х)) = G_{РК}(х)
- Enough for an IND-CPA secure PKE scheme (e.g., Security of El Gamal)

KeyGen: PK=(G,g,Y), SK=(G,g,Y) $Enc_{(G,g,Y)}(M) = (X=g^{X}, C=MY^{X})$ $Dec_{(G,g,Y)}(X,C) = CX^{-Y}$ KeyGen: (PK,SK) $Enc_{PK}(M) = (X=T_{PK}(X), C=M.G_{PK}(X))$ $Dec_{SK}(X,C) = C/R_{SK}(T_{PK}(X))$

Trapdoor PRG from Generic Assumption?

PRG constructed from OWP (or OWF)

- Allows us to instantiate the construction with several candidates
- Is there a similar construction for TPRG from OWP?
 - Trapdoor property seems fundamentally different: generic
 OWP does not suffice
 - Will start with "Trapdoor OWP"

 $(PK,T_{PK}(x),G_{PK}(x)) \approx (PK,T_{PK}(x),r)$

Trapdoor OWP

(KeyGen,f,f') (all PPT) is a trapdoor one-way permutation if
For all (PK,SK) ← KeyGen
f_{PK} a permutation
f'_{SK} is the inverse of f_{PK}
For all PPT adversary, probability of success in the Trapdoor OWP experiment is negligible

f_{PK}(x),PK

Trapdoor OWP

(KeyGen,f,f') (all PPT) is a trapdoor one-way permutation if
For all (PK,SK) ← KeyGen
f_{PK} a permutation
f'_{SK} is the inverse of f_{PK}
For all PPT adversary, probability of success in the Trapdoor OWP experiment is negligible

Hardcore predicate:

B_{PK} s.t. (PK, f_{PK}(x), B_{PK}(x)) ≈ (PK, f_{PK}(x), r)

Yes/No

b

f_{PK}(x),PK

Trapdoor PRG from Trapdoor OWP

Same construction as PRG from OWP
One bit Trapdoor PRG

 KeyGen same as Trapdoor OWP's KeyGen

 GPK(X) := BPK(X). TPK(X) := fPK(X). RSK(Y) := GPK(f'SK(Y))
 (SK assumed to contain PK)
 More generally, last permutation output serves as TPK

 $(PK,T_{PK}(x),G_{PK}(x)) \approx (PK,T_{PK}(x),r)$ $(PK,f_{PK}(x),B_{PK}(x)) \approx (PK,f_{PK}(x),r)$

Candidate Trapdoor OWPs

- From some (candidate) OWP collections, with index as public-key Recall candidate OWF collections
 - Rabin OWF: $f_{Rabin}(x; N) = x^2 \mod N$, where N = PQ, and P, Q are k-bit primes (and x uniform from {0...N-1})
 - Fact: f_{Rabin}(.; N) is a permutation among quadratic residues, when P, Q are = $3 \pmod{4}$
 - Fact: Can invert f_{Rabin}(.; N) given factorization of N

RSA function: f_{RSA}(x; N,e) = x^e mod N where N=PQ, P,Q k-bit primes, e s.t. $gcd(e,\varphi(N)) = 1$ (and x uniform from $\{0...N-1\}$) coming up

- Fact: f_{RSA}(.; N,e) is a permutation
- Fact: While picking (N,e), can also pick d s.t. x^{ed} = x

- Group operation: "multiplication modulo N"
 - Has identity, is associative
- Group elements: all numbers (mod N) which have a multiplicative inverse modulo N
 - e.g.: ℤ₆^{*} has elements {1,5}, ℤ₇^{*} has {1,2,3,4,5,6}
- a has a multiplicative inverse modulo N
 - \Rightarrow \exists integers b, c s.t. ab = 1+cN
 - $\Rightarrow gcd(a,N)=1$

Extended Euclidean algorithm to find (b,d) given (a,N). Used to efficiently invert elements in Z_N*

 Recall \mathbb{Z}_{p}^{*} | \mathbb{Z}_{P}^{*} | =: $\varphi(P) = P-1$ (all of them co-prime with P) \circ Cyclic: Isomorphic to \mathbb{Z}_{P-1} • Has $\varphi(P-1) = |\mathbb{Z}_{P-1}^*|$ different generators Discrete Log assumed to be hard • Quadratic Residues form a subgroup QR_{P}^{*} Candidate group for DDH assumption

\mathbb{Z}_N^* , N=PQ, two primes

• e.g. $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$ • $\varphi(15) = 8$

Also works with P, Q co-primes

Group operation and inverse efficiently computableCyclic?

No! In Z₁₅*, 2⁴ = 4² = 7⁴ = 8⁴ = 11² = 13⁴ = 14² = 1 (i.e., each generates at most 4 elements, out of 8)
Product of two cycles": Z₃ and Z₅*
Chinese Remainder Theorem

Chinese Remainder Theorem

• Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5

 $a \mapsto (a \mod 3, a \mod 5)$

- CRT says that the pair (a mod 3, a mod 5) uniquely determines a (mod 15)!
 - All 15 possible pairs occur, once each
- In general for N=PQ (P, Q relatively prime),
 a → (a mod P, a mod Q) maps the N
 elements to the N distinct pairs
 - In fact extends to product of more than two (relatively prime) numbers

Z ₁₅	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

Chinese Remainder Theorem and \mathbb{Z}_N

CRT representation of Z_N: every element of Z_N can be written as a unique element of Z_P × Z_Q
Addition can be done coordinate-wise
(a,b) +(mod N) (a',b') = (a +(mod P) a',b +(mod Q) b')
CRT: Z_N ≅ Z_P × Z_Q (group isomorphism)

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

Chinese Remainder Theorem and \mathbb{Z}_N^*

 \odot Elements in \mathbb{Z}_{N}^{*}

 Multiplication (and identity, and inverse) also coordinate-wise

• No multiplicative inverse iff (0,b) or (a,0) • Else in \mathbb{Z}_{N}^{*} : i.e., (a,b) s.t. $a \in \mathbb{Z}_{P}^{*}$, $b \in \mathbb{Z}_{Q}^{*}$

• $\varphi(N) = |\mathbb{Z}_N^*| = (P-1)(Q-1) (P \neq Q, \text{ primes})$

 Can efficiently compute the isomorphism (in both directions) if P, Q known [Exercise]

	A DECEMBER OF STREET, ST.	A REAL PROPERTY.
\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

RSA Function

• $f_{RSA[N,e]}(x) = x^e \mod N$ • Where N=PQ, and $gcd(e,\varphi(N)) = 1$ (i.e., $e \in \mathbb{Z}_{\varphi(N)}^*$) • Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ fRSA[N,e] is a permutation with a trapdoor (namely (N,d)) In fact, there exists d s.t. f_{RSA[N,d]} is the inverse of f_{RSA[N,e]} \odot d s.t. ed=1 (mod $\varphi(N)$), $x^{ed} = x \pmod{N}$ • For \mathbb{Z}_N^* because order is $\varphi(N)$ • For \mathbb{Z}_N ? By CRT, and because multiplication is coordinate-wise (and it holds in \mathbb{Z}_{P} and \mathbb{Z}_{Q} . note: $O^{ed} = O$) [Exercise]

RSA Function

f_{RSA[N,e]}(x) = x^e mod N
Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ Z_{φ(N})^{*})
f_{RSA[N,e]}: Z_N → Z_N
Alternately, f_{RSA[N,e]}: Z_N^{*} → Z_N^{*}
f_{RSA[N,e]} is a permutation with a trapdoor (namely (N,d))
RSA Assumption: f_{RSA[N,e]} is a OWF collection, when P, Q random k-bit primes and e < N random number s.t. gcd(e,φ(N))=1 (with inputs uniformly from Z_N or Z_N^{*})

Alternate version: e=3, P, Q restricted so that gcd(3,φ(N))=1
 RSA Assumption will be false if one can factorize N
 Then knows φ(N) and can find d=e⁻¹ in Z_{φ(N)}*
 Converse not known to hold
 Trapdoor OWP Candidate