
Public-Key Cryptography
Lecture 10

DDH Assumption  
El Gamal Encryption

Public-Key Encryption from Trapdoor OWP

Diffie-Hellman
Key-exchange

“Secure” under DDH: (gx,gx,gxy) ≈ (gx,gx,gr)

Random x∈ {0,..,|G|-1}

X

Random y∈ {0,..,|G|-1}

Y

X=gx

Output Yx Output Xy

Y=gy

gx, gy

gxy ??

Decisional Diffie-Hellman
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|] ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]

At least as strong as Discrete Log Assumption (DLA)

DLA: Raise(x; G,g) = (gx; G,g) is a OWF collection

If DDH assumption holds, then DLA holds [Why?]

But possible that DLA holds and DDH assumption doesn’t

e.g.: DLA is widely assumed to hold in Zp
* (p prime), but DDH

assumption doesn’t hold there!

Do we have a candidate group for DDH?

A Candidate DDH Group
Consider QRP

* : subgroup of Quadratic Residues

(“even power” elements) of ZP
*

Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

DDH does not hold in ZP
* : gxy is a QR w/ prob. 3/4;

gz is QR only w/ prob. 1/2.

How about in QRP
*?

Could check if cubic residue in ZP
*!

But if (P-1) is not divisible by 3, all elements in ZP
*

are cubic residues!

“Safe” if (P-1)/2 is also prime: P called a safe-prime

1

5

2

7

3
10

4

6

9

8

DDH Candidate:

QRP

*

where P is a safe-prime

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

• KeyGen uses GroupGen to get (G,g)

• x, y uniform from Z|G|

• Message encoded into group element, and
decoded

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz) (where (G,g) ← GroupGen, x,y random and
z=xy or random) plays the IND-CPA experiment with A:

But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)

Outputs 1 if experiment outputs 1 (i.e. if b=b’)

When z=random, A* outputs 1 with probability = 1/2

When z=xy, exactly IND-CPA experiment: A* outputs 1 with
probability = 1/2 + advantage of A.

Abstracting El Gamal
Trapdoor PRG:

KeyGen: a pair (PK,SK)

Three functions: GPK(.) (a PRG)
and TPK(.) (make trapdoor info)
and RSK(.) (opening the trapdoor)

GPK(x) is pseudorandom even
given TPK(x) and PK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

TPK(x) hides GPK(x). SK opens it.

RSK(TPK(x)) = GPK(x)

Enough for an IND-CPA secure PKE
scheme

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

 KeyGen: (PK,SK)

 EncPK(M) = (X=TPK(x), C=M.GPK(x))

 DecSK(X,C) = C/RSK(TPK(x))(e.g., Security of El Gamal)

Trapdoor PRG from
Generic Assumption?

PRG constructed from OWP (or OWF)

Allows us to instantiate the
construction with several
candidates

Is there a similar construction for
TPRG from OWP?

Trapdoor property seems
fundamentally different: generic
OWP does not suffice

Will start with “Trapdoor OWP”

T
Rx

KeyGen

G

zz

PK SK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

(KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation if

For all (PK,SK) ←KeyGen

fPK a permutation

f’SK is the inverse of fPK

For all PPT adversary, probability of
success in the Trapdoor OWP
experiment is negligible

(PK,SK)←KeyGen

x←{0,1}k

x’ = x?

fPK(x),PK

x’

Yes/No

Trapdoor OWP

(KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation if

For all (PK,SK) ←KeyGen

fPK a permutation

f’SK is the inverse of fPK

For all PPT adversary, probability of
success in the Trapdoor OWP
experiment is negligible

(PK,SK)←KeyGen

x←{0,1}k

b’ = BPK(x)?

fPK(x),PK

b’

Yes/No

Trapdoor OWP

Hardcore predicate:

BPK s.t. (PK,fPK(x),BPK(x)) ≈ (PK,fPK(x),r)

TPK(x)

GPK(x)

Same construction as PRG from OWP

One bit Trapdoor PRG

KeyGen same as Trapdoor OWP’s
KeyGen

GPK(x) := BPK(x). TPK(x) := fPK(x).
RsK(y) := GPK(f’SK(y))

(SK assumed to contain PK)

More generally, last permutation
output serves as TPK

Trapdoor PRG from
Trapdoor OWP

fPK

BPK

...fPK

BPK

GPK(x)

TPK(x)

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

(PK,fPK(x),BPK(x)) ≈ (PK,fPK(x),r)

fPK

BPK

x

T
Rx

KeyGen

G

zz

PK SK

Candidate Trapdoor OWPs
From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: fRabin(x; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0…N-1})

Fact: fRabin(.; N) is a permutation among quadratic residues,
when P, Q are ≡ 3 (mod 4)

Fact: Can invert fRabin(.; N) given factorization of N

RSA function: fRSA(x; N,e) = xe mod N where N=PQ, P,Q k-bit
primes, e s.t. gcd(e,φ(N)) = 1 (and x uniform from {0…N-1})

Fact: fRSA(.; N,e) is a permutation

Fact: While picking (N,e), can also pick d s.t. xed = x
Co

ming
 up

ZN
*

Group operation: “multiplication modulo N”

Has identity, is associative

Group elements: all numbers (mod N) which have a
multiplicative inverse modulo N

e.g.: Z6
* has elements {1,5}, Z7

* has {1,2,3,4,5,6}

a has a multiplicative inverse modulo N

⇔ ∃ integers b, c s.t. ab = 1+cN

⇔ gcd(a,N)=1

(⇒) gcd(a,N) | (ab-cN)

(⇐) from Euclid’s algorithm: ∃ b, d s.t. gcd(a,N) = ab+dN

| ZN
*| = #integers in [1,N-1] co-prime with N = φ(N)

Extended
Euclidean algorithm to find (b,d)

given (a,N). Used to efficiently invert
elements in ZN

*

ZP
*, P prime

Recall ZP
*

| ZP
*| =: φ(P) = P-1 (all of them co-prime with P)

Cyclic: Isomorphic to ZP-1

Has φ(P-1) = |ZP-1
*| different generators

Discrete Log assumed to be hard

Quadratic Residues form a subgroup QRP
*

Candidate group for DDH assumption

1

5

2

7

3
10

4

6

9

8

Z11
*

ZN
*, N=PQ, two primes

e.g. Z15
* = {1,2,4,7,8,11,13,14}

φ(15) = 8

Group operation and inverse efficiently computable

Cyclic?

No! In Z15
*, 24 = 42 = 74 = 84 = 112 = 134 = 142 = 1

(i.e., each generates at most 4 elements, out of 8)

“Product of two cycles”: Z3
* and Z5

*

Chinese Remainder Theorem

Also works with  
P, Q co-primes

Chinese Remainder Theorem

Consider mapping elements in Z15 (all 15 of

them) to Z3 and Z5

a ↦ (a mod 3, a mod 5)

CRT says that the pair (a mod 3, a mod 5)
uniquely determines a (mod 15)!

All 15 possible pairs occur, once each

In general for N=PQ (P, Q relatively prime),
a ↦ (a mod P, a mod Q) maps the N
elements to the N distinct pairs

In fact extends to product of more than
two (relatively prime) numbers

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4

CRT representation of ZN: every element of ZN

can be written as a unique element of ZP × ZQ

Addition can be done coordinate-wise

(a,b) +(mod N) (a’,b’) = (a +(mod P) a’,b +(mod Q) b’)

CRT: ZN ≅ ZP × ZQ (group isomorphism)

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4

Chinese Remainder Theorem
and ZN

Chinese Remainder Theorem
and ZN

*

Elements in ZN
*

Multiplication (and identity, and inverse)
also coordinate-wise

No multiplicative inverse iff (0,b) or (a,0)

Else in ZN
*: i.e., (a,b) s.t. a∈ ZP

*, b∈ ZQ
*

ZN
*
 ≅ ZP

* × ZQ
*

φ(N) = | ZN
*| = (P-1)(Q-1) (P≠Q, primes)

Can efficiently compute the isomorphism (in
both directions) if P, Q known [Exercise]

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4

RSA Function
fRSA[N,e](x) = xe mod N

Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ Zφ(N)
*)

fRSA[N,e]: ZN → ZN

Alternately, fRSA[N,e]: ZN
* → ZN

*

fRSA[N,e] is a permutation

In fact, there exists d s.t. fRSA[N,d] is the inverse of fRSA[N,e]

d s.t. ed=1 (mod φ(N)), xed = x (mod N)

For ZN
* because order is φ(N)

For ZN? By CRT, and because multiplication is coordinate-wise

(and it holds in ZP and ZQ. note: 0ed = 0) [Exercise]

with a trapdoor (namely (N,d))

RSA Function
fRSA[N,e](x) = xe mod N

Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ Zφ(N)
*)

fRSA[N,e]: ZN → ZN

Alternately, fRSA[N,e]: ZN
* → ZN

*

fRSA[N,e] is a permutation
RSA Assumption: fRSA[N,e] is a OWF collection, when P, Q random
k-bit primes and e < N random number s.t. gcd(e,φ(N))=1 (with
inputs uniformly from ZN or ZN

*)

Alternate version: e=3, P, Q restricted so that gcd(3,φ(N))=1

RSA Assumption will be false if one can factorize N

Then knows φ(N) and can find d=e-1 in Zφ(N)
*

Converse not known to hold

Trapdoor OWP Candidate

with a trapdoor (namely (N,d))

