
Public-Key Cryptography
Lecture 10


DDH Assumption  
El Gamal Encryption


Public-Key Encryption from Trapdoor OWP



Diffie-Hellman        
Key-exchange

“Secure” under DDH: (gx,gx,gxy) ≈ (gx,gx,gr)

Random x∈ {0,..,|G|-1}

X

Random y∈ {0,..,|G|-1}

Y

X=gx

Output Yx Output Xy

Y=gy

gx, gy

gxy ??



Decisional Diffie-Hellman 
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|]  ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]


At least as strong as Discrete Log Assumption (DLA)


DLA: Raise(x; G,g) = (gx; G,g) is a OWF collection


If DDH assumption holds, then DLA holds [Why?]


But possible that DLA holds and DDH assumption doesn’t


e.g.: DLA is widely assumed to hold in Zp
* (p prime), but DDH 

assumption doesn’t hold there!


Do we have a candidate group for DDH?



A Candidate DDH Group
Consider QRP

* : subgroup of Quadratic Residues   

(“even power” elements) of ZP
*


Easy to check if an element is a QR or not:          
check if raising to |G|/2 gives 1 (identity element)


DDH does not hold in ZP
* : gxy is a QR w/ prob. 3/4;    

gz is QR only w/ prob. 1/2.


How about in QRP
*?


Could check if cubic residue in ZP
*!


But if (P-1) is not divisible by 3, all elements in ZP
* 

are cubic residues!


“Safe” if (P-1)/2 is also prime: P called a safe-prime
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DDH Candidate:

QRP

*


where P is a safe-prime



El Gamal Encryption

Based on DH key-exchange


Alice, Bob generate a key 
using DH key-exchange


Then use it as a one-time pad


Bob’s “message” in the key-
exchange is his PK


Alice’s message in the key-
exchange and the ciphertext of 
the one-time pad together form 
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)


  Enc(G,g,Y)(M) = (X=gx, C=MYx)


  Dec(G,g,y)(X,C) = CX-y


• KeyGen uses GroupGen to get (G,g)

• x, y uniform from Z|G|


• Message encoded into group element, and  
decoded



Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of 
groups used)


Construct a DDH adversary A* given an IND-CPA adversary A


A*(G,g; gx,gy,gz)  (where (G,g) ← GroupGen, x,y random and      
z=xy or random) plays the IND-CPA experiment with A:


But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)


Outputs 1 if experiment outputs 1 (i.e. if b=b’)


When z=random, A* outputs 1 with probability = 1/2


When z=xy, exactly IND-CPA experiment: A* outputs 1 with 
probability = 1/2 + advantage of A.



Abstracting El Gamal
Trapdoor PRG:


KeyGen: a pair (PK,SK)


Three functions: GPK(.) (a PRG)   
and TPK(.) (make trapdoor info)          
and RSK(.) (opening the trapdoor)


GPK(x) is pseudorandom even 
given TPK(x) and PK


(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)


TPK(x) hides GPK(x). SK opens it.


RSK(TPK(x)) = GPK(x)


Enough for an IND-CPA secure PKE 
scheme 

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)


  Enc(G,g,Y)(M) = (X=gx, C=MYx)


  Dec(G,g,y)(X,C) = CX-y

  KeyGen: (PK,SK)


  EncPK(M) = (X=TPK(x), C=M.GPK(x))


  DecSK(X,C) = C/RSK(TPK(x))(e.g., Security of El Gamal)



Trapdoor PRG from 
Generic Assumption?

PRG constructed from OWP (or OWF)


Allows us to instantiate the 
construction with several 
candidates


Is there a similar construction for 
TPRG from OWP?


Trapdoor property seems 
fundamentally different: generic 
OWP does not suffice


Will start with “Trapdoor OWP”

T
Rx

KeyGen

G

zz

PK SK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)



(KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation if


For all (PK,SK) ←KeyGen


fPK a permutation


f’SK is the inverse of fPK


For all PPT adversary, probability of 
success in the Trapdoor OWP 
experiment is negligible

(PK,SK)←KeyGen

x←{0,1}k

x’ = x?

fPK(x),PK

x’

Yes/No

Trapdoor OWP



(KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation if


For all (PK,SK) ←KeyGen


fPK a permutation


f’SK is the inverse of fPK


For all PPT adversary, probability of 
success in the Trapdoor OWP 
experiment is negligible

(PK,SK)←KeyGen

x←{0,1}k


b’ = BPK(x)?

fPK(x),PK

b’

Yes/No

Trapdoor OWP

Hardcore predicate: 


BPK s.t. (PK,fPK(x),BPK(x)) ≈ (PK,fPK(x),r)



TPK(x)

GPK(x)

Same construction as PRG from OWP


One bit Trapdoor PRG 


KeyGen same as Trapdoor OWP’s 
KeyGen


GPK(x) := BPK(x).   TPK(x) := fPK(x).         
RsK(y) :=  GPK(f’SK(y))


(SK assumed to contain PK)


More generally, last permutation 
output serves as TPK

Trapdoor PRG from 
Trapdoor OWP

fPK


BPK

...fPK


BPK

GPK(x)

TPK(x)

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

(PK,fPK(x),BPK(x)) ≈ (PK,fPK(x),r)

fPK


BPK

x

T
Rx

KeyGen

G

zz

PK SK



Candidate Trapdoor OWPs
From some (candidate) OWP collections, with index as public-key


Recall candidate OWF collections


Rabin OWF: fRabin(x; N) = x2 mod N, where N = PQ, and P, Q 
are k-bit primes (and x uniform from {0…N-1})


Fact: fRabin(.; N) is a permutation among quadratic residues, 
when P, Q are ≡ 3 (mod 4)

Fact: Can invert fRabin(.; N) given factorization of N


RSA function: fRSA(x; N,e) = xe mod N where N=PQ, P,Q k-bit 
primes, e s.t. gcd(e,φ(N)) = 1 (and x uniform from {0…N-1})


Fact: fRSA(.; N,e) is a permutation


Fact: While picking (N,e), can also pick d s.t. xed = x
Co

ming
 up



ZN
*

Group operation: “multiplication modulo N”


Has identity, is associative


Group elements: all numbers (mod N) which have a 
multiplicative inverse modulo N


e.g.: Z6
* has elements {1,5}, Z7

* has {1,2,3,4,5,6}


a has a multiplicative inverse modulo N

⇔ ∃ integers b, c s.t. ab = 1+cN


⇔ gcd(a,N)=1


(⇒) gcd(a,N) | (ab-cN)


(⇐) from Euclid’s algorithm: ∃ b, d s.t. gcd(a,N) = ab+dN


| ZN
*| = #integers in [1,N-1] co-prime with N = φ(N)

Extended 
Euclidean algorithm to find (b,d) 

given (a,N). Used to efficiently invert 
elements in ZN

*



ZP
*, P prime

Recall ZP
*


| ZP
*| =: φ(P) = P-1 (all of them co-prime with P)


Cyclic: Isomorphic to ZP-1


Has φ(P-1) = |ZP-1
*| different generators


Discrete Log assumed to be hard


Quadratic Residues form a subgroup QRP
*


Candidate group for DDH assumption
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Z11
*



ZN
*, N=PQ, two primes

e.g. Z15
* = {1,2,4,7,8,11,13,14}


φ(15) = 8


Group operation and inverse efficiently computable


Cyclic?


No! In Z15
*, 24 = 42 = 74 = 84 = 112 = 134 = 142 = 1 

(i.e., each generates at most 4 elements, out of 8)


“Product of two cycles”: Z3
* and  Z5

*


Chinese Remainder Theorem

Also works with  
P, Q co-primes



Chinese Remainder Theorem

Consider mapping elements in Z15 (all 15 of 

them) to Z3 and Z5


a ↦ (a mod 3, a mod 5)


CRT says that the pair (a mod 3, a mod 5) 
uniquely determines a (mod 15)!


All 15 possible pairs occur, once each


In general for N=PQ (P, Q relatively prime), 
a ↦ (a mod P, a mod Q) maps the N 
elements to the N distinct pairs


In fact extends to product of more than 
two (relatively prime) numbers

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4



CRT representation of ZN: every element of ZN 

can be written as a unique element of  ZP × ZQ


Addition can be done coordinate-wise


(a,b) +(mod N) (a’,b’) = (a +(mod P) a’,b +(mod Q) b’)


CRT:  ZN ≅ ZP × ZQ (group isomorphism)

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4

Chinese Remainder Theorem 
and ZN



Chinese Remainder Theorem 
and ZN

*

Elements in ZN
*


Multiplication (and identity, and inverse) 
also coordinate-wise


No multiplicative inverse iff (0,b) or (a,0)


Else in ZN
*: i.e., (a,b) s.t. a∈ ZP

*, b∈ ZQ
*



ZN
*
 ≅ ZP

* × ZQ
*


φ(N) = | ZN
*| = (P-1)(Q-1) (P≠Q, primes)


Can efficiently compute the isomorphism (in 
both directions) if P, Q known [Exercise]

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4



RSA Function
fRSA[N,e](x) = xe mod N 


Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ Zφ(N)
*)


fRSA[N,e]: ZN → ZN


Alternately, fRSA[N,e]: ZN
* → ZN

*


fRSA[N,e] is a permutation

In fact, there exists d s.t. fRSA[N,d] is the inverse of fRSA[N,e]


d s.t. ed=1 (mod φ(N)), xed = x (mod N)


For ZN
* because order is φ(N)


For ZN? By CRT, and because multiplication is coordinate-wise 

(and it holds in ZP and ZQ. note: 0ed = 0) [Exercise]

with a trapdoor (namely (N,d))



RSA Function
fRSA[N,e](x) = xe mod N 


Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ Zφ(N)
*)


fRSA[N,e]: ZN → ZN


Alternately, fRSA[N,e]: ZN
* → ZN

*


fRSA[N,e] is a permutation
RSA Assumption: fRSA[N,e] is a OWF collection, when P, Q random 
k-bit primes and e < N random number s.t. gcd(e,φ(N))=1 (with 
inputs uniformly from ZN or ZN

*)


Alternate version: e=3, P, Q restricted so that gcd(3,φ(N))=1


RSA Assumption will be false if one can factorize N


Then knows φ(N) and can find d=e-1 in  Zφ(N)
*


Converse not known to hold

Trapdoor OWP Candidate

with a trapdoor (namely (N,d))


