
Public-Key Cryptography
Lecture 11


Some Trapdoor OWP Candidates



CPA-secure PKE for 
Trapdoor OWP

CPA secure PKE from Trapdoor PRG


PRG family with a (PK,SK). PK specifies the family member.


Can encapsulate the seed for the PRG such that:


PRG output remains pseudorandom even given PK and 
encapsulated seed


Can recover PRG output from encapsulated seed and SK


El Gamal: encapsulated seed = gx, PRG output = Yx


Trapdoor PRG from Trapdoor OWP
fPK


BPK

...fPK


BPK

GPK(x)
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Candidate Trapdoor OWPs

Two candidates using composite moduli


RSA function: fRSA(x; N,e) = xe mod N where N=PQ, P,Q k-bit 
primes, e s.t. gcd(e,φ(N)) = 1 (and x uniform from {0…N-1})


Fact: fRSA(.; N,e) is a permutation


Fact: While picking (N,e), can also pick d s.t. xed = x


Rabin OWF: fRabin(x; N) = x2 mod N, where N = PQ, and P, Q 
are k-bit primes (and x uniform from {0…N-1})


Fact: fRabin(.; N) is a permutation among quadratic residues, 
when P, Q are ≡ 3 (mod 4)

Fact: Can invert fRabin(.; N) given factorization of N
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Chinese Remainder Theorem

If P, Q relatively prime then the pair  
(x mod P, x mod Q) uniquely determines  
x (mod PQ)


Called the CRT representation


Addition, multiplication and exponentiation can 
be carried out coordinate wise (mod P and 
mod Q respectively in each coordinate)


Can efficiently compute the mapping (in both 
directions) if P, Q known


From (a,b) to x: Compute Ʈ,Ư s.t. ƮP+ƯQ=1 
(using Extended Euclidean Algorithm).  
Set x = bƮP+aƯQ

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4
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Proof of CRT



RSA Function
fRSA[N,e](x) = xe mod N 


Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ Zφ(N)
*)


fRSA[N,e]: ZN → ZN


Alternately, fRSA[N,e]: ZN
* → ZN

*


fRSA[N,e] is a permutation

In fact, there exists d s.t. fRSA[N,d] is the inverse of fRSA[N,e]


d s.t. ed ≡ 1 (mod φ(N)) ⇒ xed ≡ x (mod N)


Why? By CRT!

Exponentiation works coordinate-wise


ed≡1 (mod φ(N)) ⇒ ed≡1 (mod φ(P)) and ed≡1 (mod φ(Q))

with a trapdoor (namely (N,d))



RSA Function
fRSA[N,e](x) = xe mod N 


Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ Zφ(N)
*)


fRSA[N,e]: ZN → ZN


Alternately, fRSA[N,e]: ZN
* → ZN

*


fRSA[N,e] is a permutation

RSA Assumption: fRSA[N,e] is a OWF collection, when P, Q random  
k-bit primes and e < N random number s.t. gcd(e,φ(N))=1 (with 
inputs uniformly from ZN or ZN

*)


Alternate version: e=3, P, Q restricted so that gcd(3,φ(N))=1


RSA Assumption will be false if one can factorize N


Then knows φ(N) = (P-1)(Q-1) and can find d s.t. ed ≡ 1 (mod φ(N))


Converse not known to hold

Trapdoor OWP Candidate

with a trapdoor (namely (N,d))



Rabin Function

fRabin[N](x) = x2 mod N where N=PQ, P,Q primes ≡3 mod 4


Is a candidate OWF collection (indexed by N)


Equivalent to the assumption that fmult is a OWF (for the 
appropriate distribution)


If can factor N, will see how to find square-roots


So (P,Q) a trapdoor to “invert”


Fact: If can take square-root mod N, can factor N


Coming up: Is a permutation over QRN
*, with trapdoor (P,Q)



Square-roots in ZP
*

What are the square-roots of x2?


√1 = ±1


x2=1 (mod P) ⇔ (x+1)(x-1) = 0 (mod P)  

               ⇔  (x+1)=0 or (x-1)=0 (mod P)  

               ⇔  x=1 (mod P) or x=-1 (mod P)


Where -1 = g(P-1)/2


More generally √(x2) = ±x (because x2=y2 (mod P) ⇔ x = ±y)


-x = -1⋅x,

1

5

2

7

3
10

4

6

9

8

Z11
*



Square-roots in ZP
*

What are the square-roots of x2?


√1 = ±1


x2=1 (mod P) ⇔ (x+1)(x-1) = 0 (mod P)  

               ⇔  (x+1)=0 or (x-1)=0 (mod P)  

               ⇔  x=1 (mod P) or x=-1 (mod P)


Where -1 = g(P-1)/2


More generally √(x2) = ±x (because x2=y2 (mod P) ⇔ x = ±y)


-x = -1⋅x,
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Square-roots in QRP
*

In ZP
* √(x2) = ±x


How many square-roots stay in QRP
*?


Depends on P!

e.g. QR13

* = {±1,±3,±4}


1,3,-4 have 2 square-roots each. But -1,-3,4 
have none within QR13

*


Since -1 ∈ QR13
*, x ∈ QR13

*⇒ -x ∈ QR13
*


-1 ∈ QRP
* iff (P-1)/2 even


If (P-1)/2 odd, exactly one of ±x in QRP
* (for all x)


Then, squaring is a permutation in QRP
*
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Square-roots in QRP
*

In ZP
* √(x2) = ±x (i.e., x and -1⋅x )


If (P-1)/2 odd, squaring is a permutation in QRP
*


(P-1)/2 odd ⇔ P ≡ 3 (mod 4)


But easy to compute both ways!


In fact √z = z(P+1)/4 ∈ QRP
* (because (P+1)/2 even)


Rabin function defined in QRN
* and relies on keeping 

the factorization of N=PQ hidden

1

5

2

7

3
10

4

6

9

8

Z11
*



QRN
*

What do elements in QRN
* look like, for N=PQ?


By CRT, can write a ∈ ZN
* as (x,y) ∈ ZP

*×ZQ
*


CRT representation of a2 is (x2,y2) ∈ QRP
*×QRQ

*


QRN
* ≅ QRP

* × QRQ
*


If both P,Q≡3 (mod 4), then squaring is a permutation in QRN
*


√(x2,y2) = (±x,±y) in ZP
*×ZQ

* but exactly one in QRP
*×QRQ

* 


Can efficiently do this, if can compute (and invert) the 
isomorphism from QRN

* to QRP
*×QRQ

*


(P,Q) is a trapdoor


Without trapdoor, OWF candidate 


Follows from assuming OWF in ZN
*, because QRN

* forms 

1/4th of ZN
*



Rabin Function

fRabin[N](x) = x2 mod N


Candidate OWF collection, with N=PQ (P,Q random k-bit primes)


If P, Q ≡3 (mod 4), then in QRN
*


A permutation


Has a trapdoor for inverting (namely (P,Q))


Candidate Trapdoor OWP



Summary
A DLA candidate: ZP

*


A DDH candidate: QRP
* where P is a safe prime


Chinese Remainder Theorem

ZN ≅ ZP × ZQ

ZN

*
 ≅ ZP

* × ZQ
*


QRN
* ≅ QRP

* × QRQ
*


Trapdoor OWP candidates:


fRSA[N,e] = xe mod N where N=PQ and gcd(e,φ(N))=1


Trapdoor: (P,Q) → φ(N) → d=e-1 in Zφ(N)
*


fRabin[N] = x2 mod N where N=PQ, where P,Q ≡3 (mod 4)

Trapdoor: (P,Q)


Trapdoor OWP can be used to construct Trapdoor PRG


Trapdoor PRG can give IND-CPA secure PKE


