Public-Key Cryptography

Lecture 11 Some Trapdoor OWP Candidates

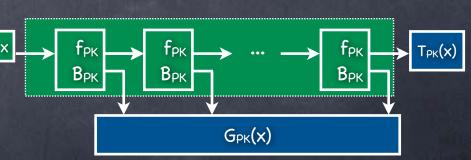
CPA-secure PKE for Trapdoor OWP

CPA secure PKE from Trapdoor PRG

RECALL

- PRG family with a (PK,SK). PK specifies the family member.
- Can encapsulate the seed for the PRG such that:
 - PRG output remains pseudorandom even given PK and encapsulated seed
 - Can recover PRG output from encapsulated seed and SK
- El Gamal: encapsulated seed = g^x, PRG output = Y^x

Trapdoor PRG from Trapdoor OWP_



Candidate Trapdoor OWPs

Two candidates using composite moduli

• RSA function: $f_{RSA}(x; N,e) = x^e \mod N$ where N=PQ, P,Q k-bit primes, e s.t. $gcd(e,\varphi(N)) = 1$ (and x uniform from {0...N-1})

Fact: f_{RSA}(.; N,e) is a permutation

Fact: While picking (N,e), can also pick d s.t. x^{ed} = x

Rabin OWF: f_{Rabin}(x; N) = x² mod N, where N = PQ, and P, Q are k-bit primes (and x uniform from {0...N-1})

Fact: f_{Rabin}(.; N) is a permutation among quadratic residues, when P, Q are = 3 (mod 4)

Fact: Can invert f_{Rabin}(.; N) given factorization of N

Remainder Theorem

- If P, Q relatively prime then the pair (x mod P, x mod Q) uniquely determines x (mod PQ)
- Called the CRT representation
- Addition, multiplication and exponentiation can be carried out coordinate wise (mod P and mod Q respectively in each coordinate)
- Can efficiently compute the mapping (in both directions) if P, Q known
 - From (a,b) to x: Compute α,β s.t. αP+βQ=1 (using Extended Euclidean Algorithm).
 Set x = bαP+aβQ
 Proof of CRT

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

RSA Function

• $f_{RSA[N,e]}(x) = x^e \mod N$ • Where N=PQ, and $gcd(e,\varphi(N)) = 1$ (i.e., $e \in \mathbb{Z}_{\varphi(N)}^*$) Alternately, $f_{RSA[N,e]}$: $\mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ f_{RSA[N,e]} is a permutation with a trapdoor (namely (N,d)) In fact, there exists d s.t. f_{RSA[N,d]} is the inverse of f_{RSA[N,e]} If d s.t. ed = 1 (mod φ(N)) ⇒ $x^{ed} = x \pmod{N}$ Why? By CRT!

Exponentiation works coordinate-wise

d =1 (mod φ(N)) ⇒ ed=1 (mod φ(P)) and ed=1 (mod φ(Q))

RSA Function

- f_{RSA[N,e]}(x) = x^e mod N
 Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ Z_{φ(N)}*)
 f_{RSA[N,e]}: Z_N → Z_N
 Alternately, f_{RSA[N,e]}: Z_N* → Z_N*
 f_{RSA[N,e]} is a permutation with a trapdoor (namely (N,d))
 RSA Assumption: f_{RSA[N,e]} is a OWF collection, when P, Q random k-bit primes and e < N random number s.t. gcd(e,φ(N))=1 (with inputs uniformly from Z_N or Z_N*)
- Alternate version: e=3, P, Q restricted so that gcd(3,φ(N))=1
 RSA Assumption will be false if one can factorize N
 Then knows φ(N) = (P-1)(Q-1) and can find d s.t. ed = 1 (mod φ(N))
 Converse not known to hold
 Trapdoor OWP Candidate

Rabin Function

• $f_{Rabin[N]}(x) = x^2 \mod N$ where N=PQ, P,Q primes = 3 mod 4

Is a candidate OWF collection (indexed by N)

Equivalent to the assumption that f_{mult} is a OWF (for the appropriate distribution)

If can factor N, will see how to find square-roots

So (P,Q) a trapdoor to "invert"

Fact: If can take square-root mod N, can factor N

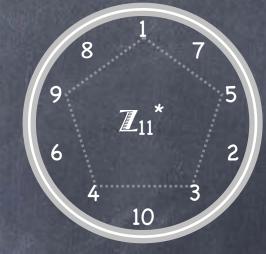
• Coming up: Is a permutation over QR_N^* , with trapdoor (P,Q)

Square-roots in \mathbb{Z}_{P}^{*}

What are the square-roots of x²?
 √1 = ±1
 x²=1 (mod P) ⇔ (x+1)(x-1) = 0 (mod P)
 ⇔ (x+1)=0 or (x-1)=0 (mod P)
 ⇔ x=1 (mod P) or x=-1 (mod P)

• Where $-1 = q^{(P-1)/2}$

• More generally $\sqrt{(x^2)} = \pm x$ (because $x^2 = y^2 \pmod{P} \Leftrightarrow x = \pm y$)

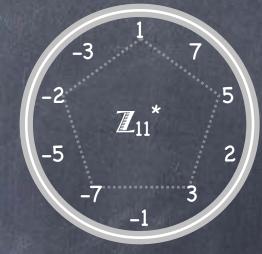


Square-roots in \mathbb{Z}_{P}^{*}

What are the square-roots of x²?
√1 = ±1
x²=1 (mod P) ⇔ (x+1)(x-1) = 0 (mod P)
⇔ (x+1)=0 or (x-1)=0 (mod P)
⇔ x=1 (mod P) or x=-1 (mod P)

• Where $-1 = g^{(P-1)/2}$

• More generally $\sqrt{(x^2)} = \pm x$ (because $x^2 = y^2 \pmod{P} \Leftrightarrow x = \pm y$)



Square-roots in QRP*

In \mathbb{Z}_{P}^{*} √(x²) = ±x

• How many square-roots stay in QR_P^* ?

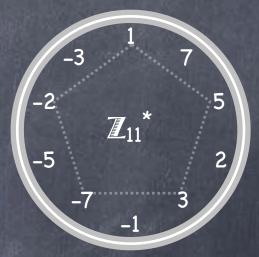
- Depends on P!
- \circ e.g. $QR_{13}^* = \{\pm 1, \pm 3, \pm 4\}$

I,3,-4 have 2 square-roots each. But −1,-3,4 have none within QR_{13}^*

• Since $-1 \in \mathbb{QR}_{13}^*$, $x \in \mathbb{QR}_{13}^* \Rightarrow -x \in \mathbb{QR}_{13}^*$

If (P-1)/2 odd, exactly one of ±x in $Q ℝ_P^*$ (for all x)

 \odot Then, squaring is a permutation in \mathbb{QR}_{P}^{*}





Square-roots in QRP*

In \mathbb{Z}_{P}^{*} √(x²) = ±x (i.e., x and −1·x)

If (P-1)/2 odd, squaring is a permutation in QR_P^*

• (P-1)/2 odd \Leftrightarrow P = 3 (mod 4)

But easy to compute both ways!
 In fact $\sqrt{z} = z^{(P+1)/4} \in \mathbb{QR}_P^*$ (because (P+1)/2 even)

Rabin function defined in QR_N^* and relies on keeping
 the factorization of N=PQ hidden



- What do elements in QR^{*} look like, for N=PQ?
 By CRT, can write a ∈ Z^{*} as (x,y) ∈ Z^{*} × Z^{*}
 CRT representation of a² is (x²,y²) ∈ QR^{*} × QR^{*}
 QR^{*} ≃ QR^{*} × QR^{*}
 - on If both P,Q=3 (mod 4), then squaring is a permutation in QR_N^*

 - Can efficiently do this, if can compute (and invert) the isomorphism from QR_N^* to $QR_P^* \times QR_Q^*$
 - (P,Q) is a trapdoor
 - Without trapdoor, OWF candidate

■ Follows from assuming OWF in \mathbb{Z}_N^* , because \mathbb{QR}_N^* forms
 1/4th of \mathbb{Z}_N^*

Rabin Function

• $f_{\text{Rabin}[N]}(x) = x^2 \mod N$ Candidate OWF collection, with N=PQ (P,Q random k-bit primes) \bigcirc If P, Q = 3 (mod 4), then in Qℝ^{*} A permutation Has a trapdoor for inverting (namely (P,Q)) Candidate Trapdoor OWP

Summary

- A DLA candidate: ℤ_P*
- A DDH candidate: QR_P^* where P is a safe prime
- Chinese Remainder Theorem

Trapdoor OWP candidates:

- $f_{\text{RSA}[N,e]} = x^e \mod N$ where N=PQ and gcd(e, $\varphi(N)$)=1 • Trapdoor: (P,Q) $\rightarrow \varphi(N) \rightarrow d=e^{-1}$ in $\mathbb{Z}_{\varphi(N)}^*$
- f_{Rabin[N]} = x² mod N where N=PQ, where P,Q = 3 (mod 4)
 Trapdoor: (P,Q)
- Trapdoor OWP can be used to construct Trapdoor PRG
 Trapdoor PRG can give IND-CPA secure PKE