
Public-Key Cryptography
Lecture 11

Some Trapdoor OWP Candidates

CPA-secure PKE for
Trapdoor OWP

CPA secure PKE from Trapdoor PRG

PRG family with a (PK,SK). PK specifies the family member.

Can encapsulate the seed for the PRG such that:

PRG output remains pseudorandom even given PK and
encapsulated seed

Can recover PRG output from encapsulated seed and SK

El Gamal: encapsulated seed = gx, PRG output = Yx

Trapdoor PRG from Trapdoor OWP
fPK

BPK

...fPK

BPK

GPK(x)

TPK(x)fPK

BPK

x

RE
CA

LL

Candidate Trapdoor OWPs

Two candidates using composite moduli

RSA function: fRSA(x; N,e) = xe mod N where N=PQ, P,Q k-bit
primes, e s.t. gcd(e,φ(N)) = 1 (and x uniform from {0…N-1})

Fact: fRSA(.; N,e) is a permutation

Fact: While picking (N,e), can also pick d s.t. xed = x

Rabin OWF: fRabin(x; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0…N-1})

Fact: fRabin(.; N) is a permutation among quadratic residues,
when P, Q are ≡ 3 (mod 4)

Fact: Can invert fRabin(.; N) given factorization of N

RE
CA

LL

Chinese Remainder Theorem

If P, Q relatively prime then the pair  
(x mod P, x mod Q) uniquely determines  
x (mod PQ)

Called the CRT representation

Addition, multiplication and exponentiation can
be carried out coordinate wise (mod P and
mod Q respectively in each coordinate)

Can efficiently compute the mapping (in both
directions) if P, Q known

From (a,b) to x: Compute Ʈ,Ư s.t. ƮP+ƯQ=1
(using Extended Euclidean Algorithm).  
Set x = bƮP+aƯQ

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4

RE
CA

LL

Proof of CRT

RSA Function
fRSA[N,e](x) = xe mod N

Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ Zφ(N)
*)

fRSA[N,e]: ZN → ZN

Alternately, fRSA[N,e]: ZN
* → ZN

*

fRSA[N,e] is a permutation

In fact, there exists d s.t. fRSA[N,d] is the inverse of fRSA[N,e]

d s.t. ed ≡ 1 (mod φ(N)) ⇒ xed ≡ x (mod N)

Why? By CRT!

Exponentiation works coordinate-wise

ed≡1 (mod φ(N)) ⇒ ed≡1 (mod φ(P)) and ed≡1 (mod φ(Q))

with a trapdoor (namely (N,d))

RSA Function
fRSA[N,e](x) = xe mod N

Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ Zφ(N)
*)

fRSA[N,e]: ZN → ZN

Alternately, fRSA[N,e]: ZN
* → ZN

*

fRSA[N,e] is a permutation

RSA Assumption: fRSA[N,e] is a OWF collection, when P, Q random  
k-bit primes and e < N random number s.t. gcd(e,φ(N))=1 (with
inputs uniformly from ZN or ZN

*)

Alternate version: e=3, P, Q restricted so that gcd(3,φ(N))=1

RSA Assumption will be false if one can factorize N

Then knows φ(N) = (P-1)(Q-1) and can find d s.t. ed ≡ 1 (mod φ(N))

Converse not known to hold

Trapdoor OWP Candidate

with a trapdoor (namely (N,d))

Rabin Function

fRabin[N](x) = x2 mod N where N=PQ, P,Q primes ≡3 mod 4

Is a candidate OWF collection (indexed by N)

Equivalent to the assumption that fmult is a OWF (for the
appropriate distribution)

If can factor N, will see how to find square-roots

So (P,Q) a trapdoor to “invert”

Fact: If can take square-root mod N, can factor N

Coming up: Is a permutation over QRN
*, with trapdoor (P,Q)

Square-roots in ZP
*

What are the square-roots of x2?

√1 = ±1

x2=1 (mod P) ⇔ (x+1)(x-1) = 0 (mod P)  

 ⇔ (x+1)=0 or (x-1)=0 (mod P)  

 ⇔ x=1 (mod P) or x=-1 (mod P)

Where -1 = g(P-1)/2

More generally √(x2) = ±x (because x2=y2 (mod P) ⇔ x = ±y)

-x = -1⋅x,

1

5

2

7

3
10

4

6

9

8

Z11
*

Square-roots in ZP
*

What are the square-roots of x2?

√1 = ±1

x2=1 (mod P) ⇔ (x+1)(x-1) = 0 (mod P)  

 ⇔ (x+1)=0 or (x-1)=0 (mod P)  

 ⇔ x=1 (mod P) or x=-1 (mod P)

Where -1 = g(P-1)/2

More generally √(x2) = ±x (because x2=y2 (mod P) ⇔ x = ±y)

-x = -1⋅x,

1

5

2

7

3
-1

-7

-5

-2

-3

Z11
*

Square-roots in QRP
*

In ZP
* √(x2) = ±x

How many square-roots stay in QRP
*?

Depends on P!

e.g. QR13

* = {±1,±3,±4}

1,3,-4 have 2 square-roots each. But -1,-3,4
have none within QR13

*

Since -1 ∈ QR13
*, x ∈ QR13

*⇒ -x ∈ QR13
*

-1 ∈ QRP
* iff (P-1)/2 even

If (P-1)/2 odd, exactly one of ±x in QRP
* (for all x)

Then, squaring is a permutation in QRP
*

Z11
*

1
2

-1

4

8

3
6-2

-4

-8

-3

-6

Z13
*

1

5

2

7

3
-1

-7

-5

-2

-3

Square-roots in QRP
*

In ZP
* √(x2) = ±x (i.e., x and -1⋅x)

If (P-1)/2 odd, squaring is a permutation in QRP
*

(P-1)/2 odd ⇔ P ≡ 3 (mod 4)

But easy to compute both ways!

In fact √z = z(P+1)/4 ∈ QRP
* (because (P+1)/2 even)

Rabin function defined in QRN
* and relies on keeping

the factorization of N=PQ hidden

1

5

2

7

3
10

4

6

9

8

Z11
*

QRN
*

What do elements in QRN
* look like, for N=PQ?

By CRT, can write a ∈ ZN
* as (x,y) ∈ ZP

*×ZQ
*

CRT representation of a2 is (x2,y2) ∈ QRP
*×QRQ

*

QRN
* ≅ QRP

* × QRQ
*

If both P,Q≡3 (mod 4), then squaring is a permutation in QRN
*

√(x2,y2) = (±x,±y) in ZP
*×ZQ

* but exactly one in QRP
*×QRQ

*

Can efficiently do this, if can compute (and invert) the
isomorphism from QRN

* to QRP
*×QRQ

*

(P,Q) is a trapdoor

Without trapdoor, OWF candidate

Follows from assuming OWF in ZN
*, because QRN

* forms

1/4th of ZN
*

Rabin Function

fRabin[N](x) = x2 mod N

Candidate OWF collection, with N=PQ (P,Q random k-bit primes)

If P, Q ≡3 (mod 4), then in QRN
*

A permutation

Has a trapdoor for inverting (namely (P,Q))

Candidate Trapdoor OWP

Summary
A DLA candidate: ZP

*

A DDH candidate: QRP
* where P is a safe prime

Chinese Remainder Theorem

ZN ≅ ZP × ZQ

ZN

*
 ≅ ZP

* × ZQ
*

QRN
* ≅ QRP

* × QRQ
*

Trapdoor OWP candidates:

fRSA[N,e] = xe mod N where N=PQ and gcd(e,φ(N))=1

Trapdoor: (P,Q) → φ(N) → d=e-1 in Zφ(N)
*

fRabin[N] = x2 mod N where N=PQ, where P,Q ≡3 (mod 4)

Trapdoor: (P,Q)

Trapdoor OWP can be used to construct Trapdoor PRG

Trapdoor PRG can give IND-CPA secure PKE

