Public-Key Cryptography

Lecture 11
Some Trapdoor OWP Candidates



@ CPA secure PKE from Trapdoor PRG
@ PRG family with a (PK,SK). PK specifies the family member.

CPA-secure PKE for
Trapdoor OWP

@ Can encapsulate the seed for the PRG such that:

@ PRG output remains pseudorandom even given PK and

encapsulated seed

@ Can recover PRG output from encapsulated seed and SK

@ El Gamal: encapsulated seed = g%, PRG oufput = Y*

@ Trapdoor PRG from Trapdoor OWP
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Candidate Trapdoor OWPs

@ Two candidates using composite moduli

@ RSA function: frsa(x; N,e) = x¢ mod N where N=PQ, PQ k-bit
primes, e s.t. gcd(e,©(N)) = 1 (and x uniform from {0...N-1})

@ Fact: frsa(.; N,e) is a permutation
@ Fact: While picking (N,e), can also pick d s.t. x®d = x

@ Rabin OWF: frabin(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0...N-1})

@ Fact: fravin(.; N) is a permutation among quadratic residues,
when P, Q are = 3 (mod 4)
@ Fact: Can invert frabin(.; N) given factorization of N



If P, Q relatively prime then the pair
(x mod P, x mod Q) uniquely determines
x (mod PQ)

Called the CRT representation

Addition, multiplication and exponenftiation can
be carried out coordinate wise (mod P and
mod Q respectively in each coordinate)

Can efficiently compute the mapping (in both
directions) if P, Q known

@ From (a,b) to x: Compute «,8 s.t. «P+3Q=1
(using Extended Euclidean Algorithm).
Sef x = baP+afQ Proof of CRT

inese Remainder Theorem
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RSA Function

@ frsanel(X) = x2 mod N

@ Where N=PQ, and gcd(e,o(N)) = 1 (i.e., e € Zyn) )
@ frsaiNe: 4N — AN

% Al’rerna’rely, FRSA[N,e]I EN* - EN

@ frsaine IS a permutation with a trapdoor (namely (N,d))

@ In fact, there exists d s.t. frsang] IS the inverse of frsa[ne]
@ ds.t. ed =1 (mod o(N)) = x°¢ = x (mod N)

@ Why? By CRT!
@ Exponentiation works coordinate-wise
@ ed=1 (mod ¢(N)) = ed=1 (mod ¢(P)) and ed=1 (mod ¢(Q))



RSA Function

@ frsamel(X) = x° mod N
@ Where N=PQ, and gcd(e,o(N)) = 1 (i.e., e € Zyn) )

@ frsaNe: AN — 4N

*

% Al’rerna’rely, FRSA[N,e]I EN* - EN

@ frsaine IS a permutation with a trapdoor (namely (N,d))

@ RSA Assumption: frsaine is a OWF collection, when P, Q random
k-bit primes and e < N random number s.t. gcd(e,o(N))=1 (with
inputs uniformly from Zy or Z\")

@ Alternate version: e=3, P, Q restricted so that gcd(3,¢(N))=1
@ RSA Assumption will be false if one can factorize N
@ Then knows ¢(N) = (P-1)(Q-1) and can find d s.t. ed = 1 (mod ¢(N))

@ Converse not known to hold
@ Trapdoor OWP Candidate



Rabin Function

@ fraviniNi(X) = X2 mod N where N=PQ, P,Q primes =3 mod 4
@ Is a candidate OWF collection (indexed by N)

@ Equivalent to the assumption that fmut is a OWF (for the
appropriate distribution)

@ If can factor N, will see how to find square-roots
@ So (PQ) a trapdoor to “invert”
@ Fact: If can take square-root mod N, can factor N

o Coming up: Is a permutation over @Ry, with trapdoor (PQ)



Square-roots in 4p

@ What are the square-roots of x2?
o 1 =l
@ x°=1 (mod P) & (x+1)(x-1) = O (mod P)
< (x+1)=0 or (x-1)=0 (mod P)
< %=1 (mod P) or x=-1 (mod P)

@ Where -1 = glP-172

@ More generally /(x?) = +x (because x2=y? (mod P) & x = ty)

@ -X = -1-%,



Square-roots in 4p

@ What are the square-roots of x2?

a A1 =+l
@ x°=1 (mod P) & (x+1)(x-1) = O (mod P)
< (x+1)=0 or (x-1)=0 (mod P)
< %=1 (mod P) or x=-1 (mod P)
@ Where -1 = glP-172

@ More generally /(x?) = +x (because x2=y? (mod P) & x = ty)

@ -X = -1-x,



Square-roots in QRp’

o In Zp" J(x?) = +x
a How many square-roots stay in QRp ?

@ Depends on P!
o e.g. QR = {£1,+3 4}

@ 1,3,-4 have 2 square-roots each. But -1,-3,4
have none within @R;3"

a Since -1 ¢ QR;3°, X € QN3 = -x € QB3

o -1 € QRy" iff (P-1)/2 even

a If (P-1)/2 odd, exactly one of +x in @QRp (for all x)

@ Then, squaring is a permutation in QRp"
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Square-roots in QRp

In Zp ~/(x?) = +x (i.e., x and -1-x )
If (P-1)/2 odd, squaring is a permutation in QRp

@ (P-1)/2 odd < P = 3 (mod 4)

But easy to compute both ways!

o In fact Jz = zP+V/% ¢ @Ry (because (P+1)/2 even)

Rabin function defined in @QRy\" and relies on keeping
the factorization of N=PQ hidden



b 4

QRN

@ What do elements in @Ry look like, for N=PQ?
@ By CRT, can write a € Zn as (x,y) € Zp x4q
@ CRT representation of a? is (x?,y?) € QRp xQRq"
o QR = QRY" x QRy’
a If both PQ=3 (mod 4), then squaring is a permutation in QR\"
o ~J(x2y?) = (£x,zy) in Zp xZq but exactly one in QRy xQRy
@ Can efficiently do this, if can compute (and invert) the
isomorphism from QRN to QRe xQRg"
@ (PQ) is a trapdoor
@ Without trapdoor, OWF candidate

a Follows from assuming OWF in Zy', because QRy™ forms
1/4th of AN



Rabin Function

@ FRabin[N](X) = )(2 mod N

@ Candidate OWF collection, with N=PQ (P,Q random k-bit primes)

o If P Q =3 (mod 4), then in @Ry

@ A permutation
@ Has a trapdoor for inverting (namely (P.Q))

@ Candidate Trapdoor OWP
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Summary

A DLA candidate: Z
A DDH candidate: QRp™ where P is a safe prime

Chinese Remainder Theorem

@ EN = Ap X dq

o AN = 4o x Z
o QRN = @ﬁp X @ﬂ()

Trapdoor OWP candidates:

@ frsaine = X mod N where N=PQ and gcd(e,p(N))=1
a Trapdoor: (PQ) — ¢(N) — d=e in Zyn)

@ frabinin] = X2 mod N where N=PQ, where PQ =3 (mod 4)
@ Trapdoor: (PQ)

Trapdoor OWP can be used to construct Trapdoor PRG

@ Trapdoor PRG can give IND-CPA secure PKE



