Public-Key Cryptography

Lecture 12 CCA Security

CCA Secure PKE

In SKE, to get CCA security, we used a MAC
Bob would accept only messages from Alice
But in PKE, Bob <u>wants to</u> receive messages from Eve as well!

But only if it is indeed Eve's own message: she should know her own message!

Chosen Ciphertext Attack

I look around

for your eyes shining

in everything ...

Suppose Enc SIM-CPA secure

Suppose encrypts a character at a time (still secure)

Alice \rightarrow Bob: Enc(m) I seek you **Eve:** Hack(Enc(m)) = Enc(m*) (where m^{*} = Reverse of m) **Eve** \rightarrow **Bob:** Enc(m*) Bob → Eve: "what's this: m*?" **Eve: Reverse m* to_find m!**

> I look around for your eyes shining l seek vou in everything...

A subtle e-mail attack

Hey Eve,

What's this that you sent me?

...gnihtyreve ni uoy kees l gninihs seye ruoy rof dnuora kool l

Malleability

Malleability: Eve can "malleate" a ciphertext (without having to decrypt it) to produce a new ciphertext that would decrypt to a "related" message

- E.g.: Malleability of El Gamal
 - Recall: $Enc_{(G,g,Y)}(m) = (g^{X}, M, Y^{X})$
 - Given (X,C) change it to (X,TC): will decrypt to TM
 - Or change (X,C) to (X^a,C^a) : will decrypt to M^a

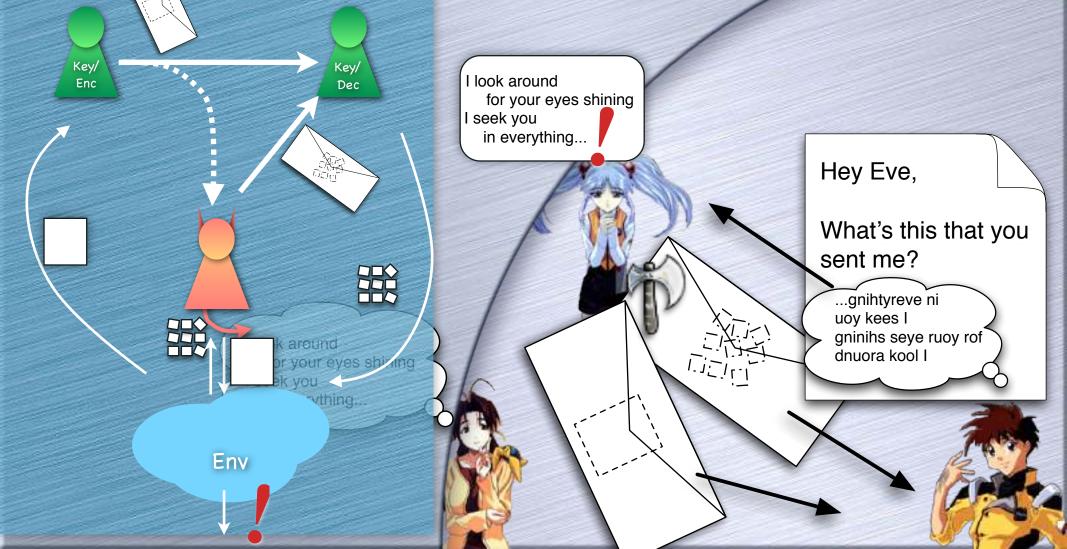
If chosen-ciphertext attack possible

- i.e., Eve can get a ciphertext of her choice decrypted
- Then Eve can exploit malleability to learn something "related to" Alice's messages

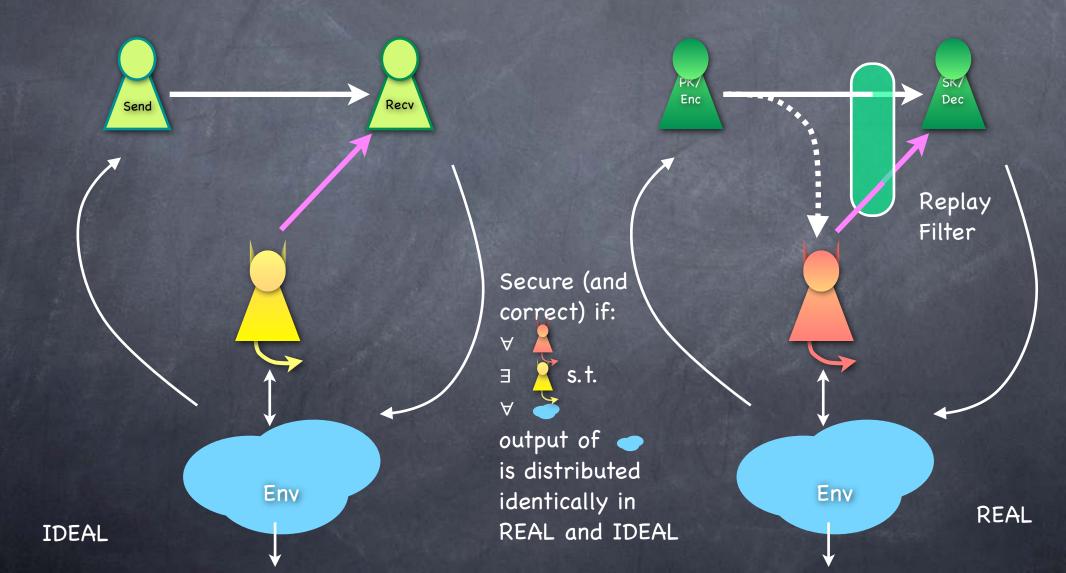
More subtly, the 1 bit – valid or invalid – may leak information on message or SK

Chosen Ciphertext Attack

SIM-CCA: does capture this attack



SIM-CCA Security (PKE)



CCA Secure PKE: Cramer_Shoup El Gamal-like: Based on DDH assumption Uses a prime-order group (e.g., QR^{*} for safe prime p)

Uses a collision-resistant hash function inside an "integrity tag"
 Enc(M) = (C,S)
 H a "collision-resistant hash function" (Later)

• $C = (g_1^{\times}, g_2^{\times}, MY^{\times})$ and $S = (WZ^{H(C)})^{\times}$

g₁, g₂, Y, W, Z are part of PK

• $Y = g_1^{y_1} g_2^{y_2}, W = g_1^{w_1} g_2^{w_2}, Z = g_1^{z_1} g_2^{z_2}.$ SK contains $(y_1, y_2, w_1, w_2, z_1, z_2)$ Multiple SKs can explain the same PK (unlike El Gamal)

Trapdoor: Using SK, and (g₁×,g₂×) can find Y×, W×, Z×

If (g1^{×1},g2^{×2}), x1≠x2, then "Y×, W×, Z×" vary with different SKs
 Decryption: Check S (assuming x1=x2) and extract M

Security of CS Scheme: Proof Sketch (g1,g1x1,g2, g2x2) is of the form (g,gx,gy,gxy) iff x1=x2

- An "invalid encryption" can be used for challenge such that
 - It contains no information about the message (given just PK)
 - Is indistinguishable from valid encryption, under DDH assumption
- But CCA adversary is not just given PK. Could she get information about the specific SK from decryption queries?
 - By querying decryption with only valid ciphertexts, adversary gets no information about SK (beyond given by PK)
 - Adversary can't create <u>new</u> "invalid ciphertexts" that get past the integrity check (except with negligible probability)
 - Any invalid ciphertext with a new H(C) can fool at most a negligible fraction of the possible SKs: so the probability of adversary fooling the specific one used is negligible
 - <u>Collision-resistance</u> of $H \Rightarrow$ new C will lead to new H(C)

More details

- Claim: Even a computationally unbounded adversary can't create "invalid ciphertexts" (i.e., with x1≠x2) with H(C) different from that of the (invalid) challenge ciphertext, and get past the integrity check (except with negligible probability)
 - Working with exponents to the base g_1 : let $g_2 = g_1^{\alpha}$, where $\alpha \neq 0$ Public key has: α , $\gamma = \gamma_1 + \alpha \gamma_2$, $w = w_1 + \alpha w_2$, $z = z_1 + \alpha z_2$ Challenge ciphertext has x_1 , x_2 , $s = (w_1 + \beta z_1)x_1 + \alpha(w_2 + \beta z_2)x_2$ where $\beta = H((g_1^{\times 1}, g_1^{\alpha \times 2}, M.(g_1^{\times 1.91 + \alpha \times 2.92})))$
 - Claim: adversary can't find s' = $(w_1+\beta'z_1)x'_1 + \alpha(w_2+\beta'z_2)x'_2$ with $x'_1 \neq x'_2$ and $\beta'\neq\beta$
 - $s = (w+\beta z)x_1 + \alpha(w_2+\beta z_2)(x_2-x_1)$, where $x_2-x_1 \neq 0$. So suppose we give $\gamma = (w_2+\beta z_2)$ to the adversary.
 - $s' = (w+\beta'z)x'_1 + \alpha\gamma(x_2-x_1) + \alpha(\beta'-\beta)z_2(x_2-x_1)$
 - But z₂ random (given the 3 linear equations for w, z, γ for the 4 variables {w_i,z_i | i∈{1,2} }), and hence there is negligible probability that s' given by the adversary will match the correct z₂