Hashes & MAC. Digital Signatures

Lecture 16

One-time MAC With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

Key: 2n random strings (each k-bit long) (rio,ri) i=1...n

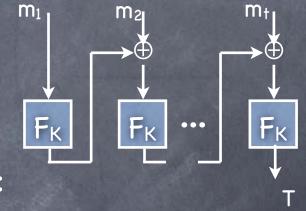
 $\begin{array}{c|cccc}
 r^{1}_{0} & r^{2}_{0} & r^{3}_{0} \\
 r^{1}_{1} & r^{2}_{1} & r^{3}_{1}
 \end{array}$

- Signature for m₁...m_n be (rⁱmi)_{i=1..n}
- Negligible probability that Eve can produce a signature on m'≠m
- A much more efficient solution, using 2-UHF (and still no computational assumptions):
 - Onetime-MAC_h(M) = h(M), where $h \leftarrow \mathcal{H}$, and \mathcal{H} is a 2-UHF
 - Seeing hash of one input gives no information on hash of another value

MAC

With Combinatorial Hash Functions and PRF

- Recall: PRF is a MAC (on one-block messages)
- CBC-MAC: Extends to any fixed length domain



- Alternate approach (for fixed length domains):
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF

h(M) not revealed

MAC

With Cryptographic Hash Functions

- A proper MAC must work on inputs of variable length
- Can make CBC-MAC work securely with variable input-length:
- Derive K as $F_{K'}(t)$, where t is the number of blocks
- Or, Use first block to specify number of blocks
- Or, output not the last tag T, but $F_{K'}(T)$, where K' an independent key (EMAC)
- Or, XOR last message block with another key K' (CMAC)
- Idea: Leave variable input-lengths to the hash
 - But combinatorial hash functions worked with a fixed domain
 - Will use a cryptographic hash function
- \circ MAC*_{K,h}(M) = MAC_K(h(M)) where h← \mathcal{H} , and \mathcal{H} a weak-CRHF
 - Weak-CRHFs can be based on OWF. Or, can be more efficiently constructed from fixed input-length MACs but only oracle

h(M) may be revealed access to h

MAC

With Cryptographic Hash Functions

- \circ MAC*_{K,h}(M) = MAC_K(h(M)) where h← \mathcal{U} , and \mathcal{U} a weak-CRHF
 - Weak-CRHFs can be based on OWF. Or, can be more efficiently constructed from fixed input-length MACs.
- Unlike the domain extension (to fixed length domain) using 2-UHF, or CBC-MAC, this doesn't rely on pseudorandomness of MAC
 - Works with any one-block MAC (not just a PRF based MAC)
 - Could avoid "export restrictions" by not being a PRF
 - Candidate fixed input-length MACs: compression functions (with key as IV)
 - Recall: Compression functions used in Merkle-Damgård iterated hash functions

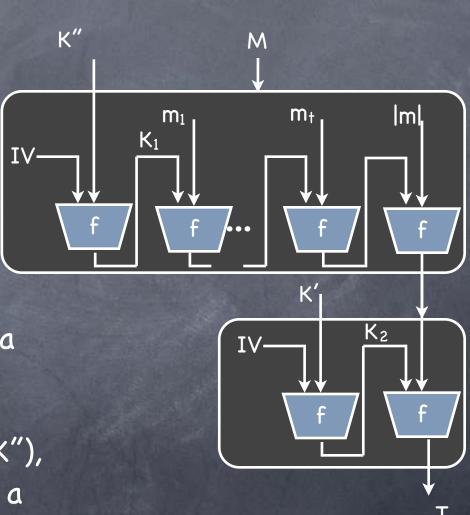
HMAC

HMAC: Hash-based MAC

Essentially built from a compression function f

o If keys K₁, K₂ independent (called NMAC), then secure MAC if: f is a fixed input-length MAC & the Merkle-Damgård iterated-hash is a weak-CRHF

In HMAC (K₁,K₂) derived from (K',K"), in turn heuristically derived from a single key K. If f is a (weak kind of) PRF K₁, K₂ can be considered independent



Hash Not a Random Oracle!

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)
- o If H is a Random Oracle, then just H(K||M) will be a MAC
 - But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery
 - (That attack can be fixed by preventing extension: prefix-free encoding)
 - Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned out to be flawed too (even before breaking SHA1)

Digital Signatures

Digital Signatures

- Syntax: KeyGen, Sign_{SK} and Verify_{VK}.
 Security: Same experiment as MAC's, but adversary given VK
- Secure digital signatures using OWF, UOWHF and PRF
 - Hence, from OWF alone (more efficiently from OWP)
- More efficient using CRHF instead of UOWHF
- Even more efficient based on (strong) number-theoretic assumptions
 - e.g. Cramer-Shoup Signature based on "Strong RSA assumption"
- Efficient schemes secure in the Random Oracle Model
 - e.g. RSA-PSS in RSA Standard PKCS#1

One-time Digital Signatures

Recall One-time MAC to sign a single n bit message

<u>Lamport's</u> One-Time Signature

- Shared secret key: 2n random strings (each k-bit long) (rio,ri) i=1..n
- Signature for m₁...mn be (rimi)i=1..n
- One-Time Digital Signature: Same signing key and signature, but VK= $(f(r_0^i), f(r_1^i))_{i=1..n}$ where f is a OWF

9	vermeand	m applies	1 10	signature	elements	ana
	compares	with VK				

f(r ¹ ₀)	f(r ² ₀)	f(r ³ ₀)
f(r11)	f(r ² ₁)	f(r31)

r^{1}_{0}	r ² 0	r ³ 0
r^{1}_{1}	r²1	r ³ 1

Security [Exercise]

Domain Extension of (One-time) Signatures

- Lamport's scheme has a fixed-length message (and SK/VK are much longer than the message)
- Hash-and-Sign domain extension for signatures
 - (If applied to one-time signature, still one-time, but with variable input-length)
 - Domain extension using a CRHF (not weak CRHF, unlike for MAC)
 - Sign*_{SK,h}(M) = Sign_{SK}(h(M)) where h←# in both SK*,VK*
 - Can use UOWHF, with fresh h every time (included in signature)
 - Sign*_{SK}(M) = (h,Sign_{SK}(h,h(M))) where h←𝓜 picked by signer
- Using a "certificate chain/tree", can build a full-fledged signature scheme starting from one-time signatures (skipped)

More Efficient Signatures

- Diffie-Hellman suggestion (heuristic): Sign(M) = $f^{-1}(M)$ where (SK,VK) = (f^{-1},f) , a Trapdoor OWP pair. Verify(M, σ) = 1 iff $f(\sigma)$ =M.
 - Attack: pick σ , let M=f(σ) (Existential forgery)
- \circ Fix: Sign(M) = f^{-1} (Hash(M))
 - Secure? Adversary gets to choose M and hence Hash(M); so signing oracle gives adversary access to f⁻¹ oracle. But Trapdoor OWP gives no guarantees when adversary is given f⁻¹ oracle.
 - If Hash(.) modeled as a random oracle then adversary can't choose Hash(M), and effectively doesn't have access to f⁻¹ oracle. Then indeed secure
 - "Standard schemes" like RSA-PSS are based on this

Proving Security in the RO Model

- To prove: If Trapdoor OWP secure, then Sign(M) = f⁻¹(Hash(M)) is a secure digital signature in the RO Model, with Hash modelled as a random oracle
 - Intuition: adversary only sees $(x,f^{-1}(x))$ where x is random, which it could have obtained anyway, by picking $f^{-1}(x)$ first
- Modeling as an RO: RO randomly initialized to a random function H from {0,1}* to {0,1}k
 - Signer and verifier (and forger) get oracle access to H(.)
 - All probabilities also over the initialization of the RO

Proving Security in ROM

Reduction: If A forges signature (where Sign(M) = $f^{-1}(H(M))$ with (f,f^{-1}) from Trapdoor OWP and H an RO), then A* that can break Trapdoor OWP (i.e., given just f, and a random challenge z, can find $f^{-1}(z)$ w.n.n.p). A*(f,z) runs A internally.

A expects f, access to the RO and a signing oracle f⁻¹(Hash(.))

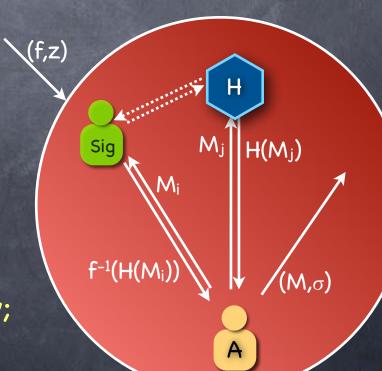
and outputs (M,σ) as forgery

A* can implement RO: a random response to each new query!

A* gets f, but doesn't have f-1 to sign

But x = H(M) is a random value that A^* can pick!

• A* picks H(M) as x=f(y) for random y; then Sign(M) = $f^{-1}(x) = y$



Proving Security in ROM

- A* s.t. if A forges signature, then A* can break Trapdoor OWP
 - A* implements H and Sign: For each new M queried to H (including by Sign), A* sets H(M)=f(y) for random y; Sign(M) = y
 - But A* should force A to invert z
 - For a random (new) query M (say tth) A* sets H(M)=z
 - Here queries include the "last query" to H, i.e., the one for verifying the forgery (may or may not be a new query)
 - Given a bound q on the number of queries that A makes to Sign/H, with probability 1/q, A* would have set H(M)=z, where M is the message in the forgery
 - In that case forgery $\Rightarrow \sigma = f^{-1}(z)$



Schnorr Signature

- Public parameters: (G,g) where G is a prime-order group and g a generator, for which DLA holds, and a random oracle H
 - Or (G,g) can be picked as part of key generation
- Signing Key: $y \in Z_q$ where G is of order q. Verification Key: $Y = g^y$
- Sign_y(M) = (e,s) where $e = H(M||g^r)$ and s = r-ye, for a random r
- Verify_Y(M,(e,s)): Compute R = $g^{s} \cdot Y^{e}$ and check e = H(M||R)
- Secure in the Random Oracle model under the Discrete Log Assumption for a group
 - Alternately, under a heuristic model for the group (called the Generic Group Model), but under standard-model assumptions on the hash function