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Randomness Extraction



Randomness Extractors
Consider a PRG which outputs a pseudorandom group element in 
some complicated group


A standard bit-string representation of a random group 
element may not be (pseudo)random


Can we efficiently map it to a pseudorandom bit string? 
Depends on the group...


Suppose a chip for producing random bits shows some 
complicated dependencies/biases, but still is highly unpredictable


Can we purify it to extract uniform randomness? Depends on 
the specific dependencies...


A general tool for purifying randomness: Randomness Extractor



Randomness Extractors

Statistical guarantees (output not just pseudorandom, but truly 
random, if input has sufficient entropy)


2-Universal Hash Functions


“Optimal” in all parameters except seed length


Constructions with shorter seeds known


e.g. Based on expander graphs



Randomness Extractors
Strong extractor: output is random even when the seed for 
extraction is revealed


2-UHF is an example


Useful in key agreement


Alice and Bob exchange a non-uniform key, with a lot of 
pseudoentropy for Eve (say, gxy)


Alice sends a random seed for a strong extractor to Bob, in 
the clear


Key derivation: Alice and Bob extract a new key, which is 
pseudorandom (i.e., indistinguishable from a uniform bit 
string)



Randomness Extractors
Pseudorandomness Extractors (a.k.a. computational extractors): 
output is guaranteed only to be pseudorandom if input has 
sufficient (pseudo)entropy


Key Derivation Function: Strong pseudorandomness extractor


Cannot directly use a block-cipher, because pseudorandomness 
required even when the randomly chosen seed is public (“salt”)


Extract-Then-Expand: Enough to extract a key for a PRF


Can be based on HMAC or CBC-MAC: Statistical guarantee, if 
compression function/block-cipher is a random function/
random permutation


Models IPsec Key Exchange (IKE) protocol. HMAC version 
later standardised as HKDF.



Randomness Extractors

Extractors for use in system Random Number Generator 
(think /dev/random)


Additional issues:


Online model, with a variable (and unknown) rate of 
entropy accumulation


Should recover from compromise due to low entropy 
phases


Constructions provably secure in such models known 


Using PRG (e.g., AES in CTR mode), universal hashing and 
“pool scheduling”  (similar to Fortuna, used in Windows)



Secure Communication 
In Practice



We saw...

Symmetric-Key Components


SKE, MAC


Public-Key Components


 PKE, Digital Signatures


Building blocks: Block-ciphers (AES), Hash-functions (SHA-3), 
Trapdoor PRG/OWP for PKE (e.g., DDH, RSA)  and  
Random Oracle heuristics (in RSA-OAEP, RSA-PSS)


Symmetric-Key primitives much faster than Public-Key ones


Hybrid Encryption gets best of both worlds



Secure Communication in 
Practice

Can do at application-level


e.g. between web-browser and web-server 


Or lower-level infrastructure to allow use by more applications


e.g. between OS kernels, or between network gateways


Standards in either case


To be interoperable


To not insert bugs by doing crypto engineering oneself


e.g.: SSL/TLS (used in https), IPSec (in the “network layer”)



Security Architectures 
(An example)

From the IBM WebSphere Developer Technical Journal

Security architecture (client perspective)



Secure Communication 
Infrastructure

Goal: a way for Alice and Bob to get a private and authenticated 
communication channel (can give a detailed SIM-definition)


Simplest idea: Use a (SIM-CCA secure) public-key encryption 
(possibly a hybrid encryption) to send signed (using an existentially 
unforgeable signature scheme)  messages (with sequence numbers 
and channel id)


Limitation: Alice, Bob need to know each other’s public-keys


But typically Alice and Bob engage in “transactions,” exchanging 
multiple messages, maintaining state throughout the transaction


Makes several efficiency improvements possible



Secure Communication 
Infrastructure

Secure Communication Sessions


Handshake protocol: establish private shared keys


Record protocol: use efficient symmetric-key schemes


Server-to-server communication: Both parties have (certified) 
public-keys


Client-server communication: server has (certified) public-keys


Client “knows” server. Server willing to talk to all clients


Client-Client communication (e.g., email)  
Clients share public-keys in ad hoc 
ways

Server may “know” (some) clients 
too, using passwords, pre-shared 
keys, or if they have (certified) 

public-keys. Often implemented in 
application-layer

(Authenticated)  
Key-Exchange



Certificate Authorities

How does a client know a server’s public-key?


Based on what is received during a first session? (e.g., first   
ssh connection to a server)


Better idea: Chain of trust


Client knows a certifying authority’s public key (for signature)



Certificate Authorities

How does a client know a server’s public-key?


Based on what is received during a first session? (e.g., first   
ssh connection to a server)


Better idea: Chain of trust


Client knows a certifying authority’s public key (for signature)

Bundled with the software/hardware


Certifying Authority signs the signature PK of the server


CA is assumed to have verified that the PK was generated 
by the “correct” server before signing


Validation standards: Domain/Extended validation



Forward Secrecy

Servers have long term public keys that are certified


Would be enough to have long term signature keys, but in 
practice long term encryption keys too


Problem: if the long term key is leaked, old communications are 
also revealed


Adversary may have already stored, or even actively 
participated in old sessions


Solution: Use fresh public-keys/do a fresh key-exchange for 
each session (authenticated using signatures)



A Simple Secure 
Communication Scheme

Handshake

Client sends session keys for MAC and 
SKE to the server using SIM-CCA 
secure PKE, with server’s PK (i.e. over 
an unauthenticated, but private channel)


For authentication only: use MAC


In fact, a “stream-MAC”: To send more 
than one message, but without allowing 
reordering


For authentication + (CCA secure) 
encryption: encrypt-then-MAC


stream-cipher, and “stream-MAC”

Recall “inefficient” domain-
extension of MAC: Add a 

session-specific nonce and a 
sequence number to each 
message before MAC’ing

Server’s PK either trusted (from 
a previous session for e.g) or 

certified by a trusted CA, using 
a Digital Signature scheme

Authentication for free: MAC 
serves dual purposes!

Need to avoid replay attacks 
(infeasible for server to explicitly 
check for replayed ciphertexts)



TLS (SSL)

Handshake

Client sends session keys for MAC and 
SKE to the server using SIM-CCA 
secure PKE, with server’s PK (i.e. over 
an unauthenticated, but private channel)


For authentication only: use MAC


In fact, a “stream-MAC”: To send more 
than one message, but without allowing 
reordering


For authentication + (CCA secure) 
encryption: encrypt-then-MAC


stream-cipher, and “stream-MAC”

Negotiations on protocol version etc. 
and  “cipher suites” (i.e., which PKE/
key-exchange, SKE, MAC (and CRHF)).

e.g. cipher-suite: RSA-OAEP for key-
exchange, AES for SKE,  
HMAC-SHA256 for MAC

Server sends a certificate of its PKE 
public-key, which the client verifies

Server also “contributes” to key-
generation (to avoid replay attack 

issues): Roughly, client sends a key K 
for a PRF; a master key generated as 
PRFK(x,y) where x from client and y 

from server. SKE and MAC keys 
derived from master key

Uses MAC-then-encrypt! Not CCA  
secure in general, but secure with 
stream-cipher (and with some other 
modes of block-ciphers, like CBC)

Several details on closing sessions, 
session caching, resuming sessions …



TLS: Some Considerations
Overall security goal: Authenticated and Confidential Channel 
Establishment (ACCE), or Server-only ACCE


Handshake Protocol


Cipher suites are negotiated, not fixed → “Downgrade attacks”


Doesn’t use CCA secure PKE, but overall CCA secure if error in 
decryption “never revealed” (tricky to ensure!)


Record Protocol


Using MAC-then-Encrypt is tricky:


CCA-secure when using SKE implemented using a stream 
cipher (or block-cipher in CTR mode) or CBC-MAC 


But insecure if it reveals information from decryption phase. 

e.g., different times taken by MAC check (or different error 
messages!) when a format error in decrypted message



Numerous vulnerabilities keep surfacing  
FREAK, DROWN, POODLE, Heartbleed, Logjam, …  
And numerous unnamed ones: www.openssl.org/news/vulnerabilities.html 
Listed as part of Common Vulnerabilities and Exposures (CVE) list: cve.mitre.org/


Bugs in protocols


Often in complex mechanisms created for efficiency


Often facilitated by the existence of weakened “export grade” 
encryption and improved computational resources


Also because of weaker legacy encryption schemes (e.g. 
Encryption from RSA PKCS#1 v1.5 — known to be not CCA 
secure and replaced in 1998 — is still used in TLS)


Bugs in implementations


Side-channels originally not considered


Back-Doors (?) in the primitives used in the standards

TLS: Some Considerations

http://www.openssl.org/news/vulnerabilities.html
http://cve.mitre.org/
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TLS: Some Considerations● Started life as the Secure Sockets Layer (SSL) protocol, developed 
by Netscape. 

● SSL 2.0 (1995)  → SSL 3.0 (1996)

                                             

                                       TLS 1.0 (1999) → TLS 1.1 (2006) → TLS 1.2 (2008)

5(Kenny Paterson & Thyla van der Merwe, Dec 2016 )

http://www.openssl.org/news/vulnerabilities.html
http://cve.mitre.org/


Beyond Communication

Encryption/Authentication used for data at rest


e.g., disk encryption, storing encrypted data on a cloud 
server, …


Security definitions like SIM-CCA do not directly extend to all 
these settings


New concerns that do not arise in setting up communication 
channels


e.g., circular (in)security: encrypting the SK using its own PK


