
Randomness Extractors. 
Secure Communication in

Practice
Lecture 17

 

Monday

11:00 - 12:30 What is MPC? Manoj

2:00 - 3:00 Zero Knowledge Muthu

3:30 - 5:00 Garbled Circuits Arpita

Tuesday

9:00 - 10:30 Randomized Encoding Yuval

11:00 - 12:30 Oblivious Transfer Arpita

2:00 - 3:30 Composition Muthu

4:00 - 5:00 MPC Complexity Manoj

Wednesday

9:00 - 10:30 Honest-Majority MPC Vassilis

11:00 - 12:30 "MPC in the head” Yuval

2:00 - 3:00 Asynchronous MPC Vassilis

Manoj Prabhakaran 

IIT Bombay

Muthu Venkitasubramaniam

U Rochester

Yuval Ishai  

Technion & UCLA

Arpita Patra  

IISc

Vassilis Zikas

RPI

Randomness Extraction

Randomness Extractors
Consider a PRG which outputs a pseudorandom group element in
some complicated group

A standard bit-string representation of a random group
element may not be (pseudo)random

Can we efficiently map it to a pseudorandom bit string?
Depends on the group...

Suppose a chip for producing random bits shows some
complicated dependencies/biases, but still is highly unpredictable

Can we purify it to extract uniform randomness? Depends on
the specific dependencies...

A general tool for purifying randomness: Randomness Extractor

Randomness Extractors

Statistical guarantees (output not just pseudorandom, but truly
random, if input has sufficient entropy)

2-Universal Hash Functions

“Optimal” in all parameters except seed length

Constructions with shorter seeds known

e.g. Based on expander graphs

Randomness Extractors
Strong extractor: output is random even when the seed for
extraction is revealed

2-UHF is an example

Useful in key agreement

Alice and Bob exchange a non-uniform key, with a lot of
pseudoentropy for Eve (say, gxy)

Alice sends a random seed for a strong extractor to Bob, in
the clear

Key derivation: Alice and Bob extract a new key, which is
pseudorandom (i.e., indistinguishable from a uniform bit
string)

Randomness Extractors
Pseudorandomness Extractors (a.k.a. computational extractors):
output is guaranteed only to be pseudorandom if input has
sufficient (pseudo)entropy

Key Derivation Function: Strong pseudorandomness extractor

Cannot directly use a block-cipher, because pseudorandomness
required even when the randomly chosen seed is public (“salt”)

Extract-Then-Expand: Enough to extract a key for a PRF

Can be based on HMAC or CBC-MAC: Statistical guarantee, if
compression function/block-cipher is a random function/
random permutation

Models IPsec Key Exchange (IKE) protocol. HMAC version
later standardised as HKDF.

Randomness Extractors

Extractors for use in system Random Number Generator
(think /dev/random)

Additional issues:

Online model, with a variable (and unknown) rate of
entropy accumulation

Should recover from compromise due to low entropy
phases

Constructions provably secure in such models known

Using PRG (e.g., AES in CTR mode), universal hashing and
“pool scheduling” (similar to Fortuna, used in Windows)

Secure Communication
In Practice

We saw...

Symmetric-Key Components

SKE, MAC

Public-Key Components

 PKE, Digital Signatures

Building blocks: Block-ciphers (AES), Hash-functions (SHA-3),
Trapdoor PRG/OWP for PKE (e.g., DDH, RSA) and  
Random Oracle heuristics (in RSA-OAEP, RSA-PSS)

Symmetric-Key primitives much faster than Public-Key ones

Hybrid Encryption gets best of both worlds

Secure Communication in
Practice

Can do at application-level

e.g. between web-browser and web-server

Or lower-level infrastructure to allow use by more applications

e.g. between OS kernels, or between network gateways

Standards in either case

To be interoperable

To not insert bugs by doing crypto engineering oneself

e.g.: SSL/TLS (used in https), IPSec (in the “network layer”)

Security Architectures
(An example)

From the IBM WebSphere Developer Technical Journal

Security architecture (client perspective)

Secure Communication
Infrastructure

Goal: a way for Alice and Bob to get a private and authenticated
communication channel (can give a detailed SIM-definition)

Simplest idea: Use a (SIM-CCA secure) public-key encryption
(possibly a hybrid encryption) to send signed (using an existentially
unforgeable signature scheme) messages (with sequence numbers
and channel id)

Limitation: Alice, Bob need to know each other’s public-keys

But typically Alice and Bob engage in “transactions,” exchanging
multiple messages, maintaining state throughout the transaction

Makes several efficiency improvements possible

Secure Communication
Infrastructure

Secure Communication Sessions

Handshake protocol: establish private shared keys

Record protocol: use efficient symmetric-key schemes

Server-to-server communication: Both parties have (certified)
public-keys

Client-server communication: server has (certified) public-keys

Client “knows” server. Server willing to talk to all clients

Client-Client communication (e.g., email)  
Clients share public-keys in ad hoc 
ways

Server may “know” (some) clients
too, using passwords, pre-shared
keys, or if they have (certified)

public-keys. Often implemented in
application-layer

(Authenticated)  
Key-Exchange

Certificate Authorities

How does a client know a server’s public-key?

Based on what is received during a first session? (e.g., first
ssh connection to a server)

Better idea: Chain of trust

Client knows a certifying authority’s public key (for signature)

Certificate Authorities

How does a client know a server’s public-key?

Based on what is received during a first session? (e.g., first
ssh connection to a server)

Better idea: Chain of trust

Client knows a certifying authority’s public key (for signature)

Bundled with the software/hardware

Certifying Authority signs the signature PK of the server

CA is assumed to have verified that the PK was generated
by the “correct” server before signing

Validation standards: Domain/Extended validation

Forward Secrecy

Servers have long term public keys that are certified

Would be enough to have long term signature keys, but in
practice long term encryption keys too

Problem: if the long term key is leaked, old communications are
also revealed

Adversary may have already stored, or even actively
participated in old sessions

Solution: Use fresh public-keys/do a fresh key-exchange for
each session (authenticated using signatures)

A Simple Secure
Communication Scheme

Handshake

Client sends session keys for MAC and
SKE to the server using SIM-CCA
secure PKE, with server’s PK (i.e. over
an unauthenticated, but private channel)

For authentication only: use MAC

In fact, a “stream-MAC”: To send more
than one message, but without allowing
reordering

For authentication + (CCA secure)
encryption: encrypt-then-MAC

stream-cipher, and “stream-MAC”

Recall “inefficient” domain-
extension of MAC: Add a

session-specific nonce and a
sequence number to each
message before MAC’ing

Server’s PK either trusted (from
a previous session for e.g) or

certified by a trusted CA, using
a Digital Signature scheme

Authentication for free: MAC
serves dual purposes!

Need to avoid replay attacks
(infeasible for server to explicitly
check for replayed ciphertexts)

TLS (SSL)

Handshake

Client sends session keys for MAC and
SKE to the server using SIM-CCA
secure PKE, with server’s PK (i.e. over
an unauthenticated, but private channel)

For authentication only: use MAC

In fact, a “stream-MAC”: To send more
than one message, but without allowing
reordering

For authentication + (CCA secure)
encryption: encrypt-then-MAC

stream-cipher, and “stream-MAC”

Negotiations on protocol version etc.
and “cipher suites” (i.e., which PKE/
key-exchange, SKE, MAC (and CRHF)).

e.g. cipher-suite: RSA-OAEP for key-
exchange, AES for SKE,  
HMAC-SHA256 for MAC

Server sends a certificate of its PKE
public-key, which the client verifies

Server also “contributes” to key-
generation (to avoid replay attack

issues): Roughly, client sends a key K
for a PRF; a master key generated as
PRFK(x,y) where x from client and y

from server. SKE and MAC keys
derived from master key

Uses MAC-then-encrypt! Not CCA
secure in general, but secure with
stream-cipher (and with some other
modes of block-ciphers, like CBC)

Several details on closing sessions,
session caching, resuming sessions …

TLS: Some Considerations
Overall security goal: Authenticated and Confidential Channel
Establishment (ACCE), or Server-only ACCE

Handshake Protocol

Cipher suites are negotiated, not fixed → “Downgrade attacks”

Doesn’t use CCA secure PKE, but overall CCA secure if error in
decryption “never revealed” (tricky to ensure!)

Record Protocol

Using MAC-then-Encrypt is tricky:

CCA-secure when using SKE implemented using a stream
cipher (or block-cipher in CTR mode) or CBC-MAC

But insecure if it reveals information from decryption phase.

e.g., different times taken by MAC check (or different error
messages!) when a format error in decrypted message

Numerous vulnerabilities keep surfacing  
FREAK, DROWN, POODLE, Heartbleed, Logjam, …  
And numerous unnamed ones: www.openssl.org/news/vulnerabilities.html 
Listed as part of Common Vulnerabilities and Exposures (CVE) list: cve.mitre.org/

Bugs in protocols

Often in complex mechanisms created for efficiency

Often facilitated by the existence of weakened “export grade”
encryption and improved computational resources

Also because of weaker legacy encryption schemes (e.g.
Encryption from RSA PKCS#1 v1.5 — known to be not CCA
secure and replaced in 1998 — is still used in TLS)

Bugs in implementations

Side-channels originally not considered

Back-Doors (?) in the primitives used in the standards

TLS: Some Considerations

http://www.openssl.org/news/vulnerabilities.html
http://cve.mitre.org/

Numerous vulnerabilities keep surfacing  
FREAK, DROWN, POODLE, Heartbleed, Logjam, …  
And numerous unnamed ones: www.openssl.org/news/vulnerabilities.html 
Listed as part of Common Vulnerabilities and Exposures (CVE) list: cve.mitre.org/

Bugs in protocols

Often in complex mechanisms created for efficiency

Often facilitated by the existence of weakened “export grade”
encryption and improved computational resources

Also because of weaker legacy encryption schemes (e.g.
Encryption from RSA PKCS#1 v1.5 — known to be not CCA
secure and replaced in 1998 — is still used in TLS)

Bugs in implementations

Side-channels originally not considered

Back-Doors (?) in the primitives used in the standards

TLS: Some Considerations● Started life as the Secure Sockets Layer (SSL) protocol, developed
by Netscape.

● SSL 2.0 (1995) → SSL 3.0 (1996)

 TLS 1.0 (1999) → TLS 1.1 (2006) → TLS 1.2 (2008)

5(Kenny Paterson & Thyla van der Merwe, Dec 2016)

http://www.openssl.org/news/vulnerabilities.html
http://cve.mitre.org/

Beyond Communication

Encryption/Authentication used for data at rest

e.g., disk encryption, storing encrypted data on a cloud
server, …

Security definitions like SIM-CCA do not directly extend to all
these settings

New concerns that do not arise in setting up communication
channels

e.g., circular (in)security: encrypting the SK using its own PK

