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And a bit of Zero-Knowledge Proofs



TCP/IP: Developed in the 70’s


IP: at the internet layer.


Handles addressing and routing


TCP: at the transport layer.


Setting up channels (between 
ports), with traffic control, error-
correction etc.


Link layer (e.g., ethernet,wifi) and 
Application layer (e.g., web, e-mail) are 
too specific for TCP/IP


Interfaces: Media Access Controller 
(MAC) and ports

Internet Protocol Suite

en.wikipedia.org/wiki/Internet_protocol_suite



Some important protocols at the application layer help IP


Domain Name Service (DNS)


Translating names to IP addresses


Routing: whom to forward a packet to


Two-level Routing 


Border Gateway Protocol (BGP): Routing across 
“Autonomous Systems” (AS)


Routing within an AS: Various protocols

Internet Protocol Suite



Originally, TCP/IP designed assuming cooperating nodes


Focus on speed, scalability, inter-operability. No authentication, 
no encryption.


Transport Layer can implement secure channels even if the lower 
levels of the network are adversarial (TLS)


But if the network is arbitrarily adversarial, cannot prevent 
Denial of Service


Also, secure channels don’t hide traffic (source/destination, 
rate of communication)


IPsec — and authenticated versions of DNS, BGP — to make the 
network less adversarial. (But does not try to anonymise traffic.)


Importantly, implement authenticated channels. (IPsec also 
provides the option of encryption.)

Internet Protocol Suite



IPsec
Four components:


Internet Key Exchange (IKE): public-key phase to establish 
symmetric keys for the remaining components. 


Relies on certificates (from certificate authorities)


Uses Diffie-Hellman key-exchange


Authentication Header (AH): MAC


On top of the entire IP packet (including headers)


Uses HMAC with SHA2, SHA1 or MD5 as the 
compression function. (Collision in compression function 
not known to translate to an attack on HMAC.)


Encapsulating Security Payload (ESP): SKE


AH on top of ESP: Encrypt-then-MAC  ✓


IP Payload Compression



BGP
All IP addresses distributed among ~56000 ASes, including large 
(Tier 1) internet service providers, smaller ISPs, large and small 
institutions and corporations


Routing across “ASes” based on what they advertise to each other


Each AS re-advertises routes that it already learned


Each AS uses a (business or optimisation) policy to choose a route 
from many advertised to it


A corrupt AS can send bogus routing information to another 
AS, and make it forward packets to it


The corrupt AS may analyse or drop (some of) the traffic 
sent to it


Several examples of incidents, sometimes resulting from 
misconfiguration, leading to outages



BGPsec
An important class of attacks is when an AS advertises that it 
has an IP range (i.e., IP prefix) within it


AS “originates” the IP range


Makes it more likely for another AS to use this route to the 
targeted IP range


Even more likely, if it announces route to sub-ranges as 
ASes typically favour more specific IP ranges that contain 
the destination IP


Route Origin Authorization (ROA): require a certificate from an 
authority when originating an IP range


Uses “Resource PKI,” rooted at “Regional Internet Registries”


AS will accept only paths that end in a validated origin



BGPsec

Using Route Origin Authorisation does not validate the entire path 
being advertised


BGPsec requires each step in the path to be authorised, by the 
destination of that step (except the last step to an IP range, 
which is certified by an authority)


If Regional Internet Registries are trusted (and their keys 
known), then an honest AS will not use an “invalid” route


Cannot prevent ASes from advertising legitimate paths and 
then dropping traffic routed through them


Or colluding ASes to pretend there is a direct edge (one-hop 
path) between them 



DNS
Ddomain names (an.example.com) need to be translated to IP 
addresses (32 bit IPv4 address like 93.184.216.34 or 128 bit IPv6 
address 9abc:def0:1234:5678:90ab:cdef:0123:4567)


Solution: Domain Name servers which respond to a domain name  
with an IP address


Problem: An adversary can respond to any DNS query!


Causes DoS. Facilitates traffic analysis. And, if no transport 
layer security, serious problem, which will never be detected!


Easy fix: DNS-over-TLS (not common yet)


Additional Problem: Name servers could be corrupt!


Solution: store and return signed records, signed by the zone-
owner. Secure against corrupt name servers. (And, provides 
authenticity — but not secrecy — even without TLS.)



DNSSEC
NSEC: store and return signed records, signed by the zone-owner


But what if the name server says no record available?


Need to verify that!


Simple idea: server should return two consecutive entries (in 
sorted order) and show that they are consecutive


Zone-owner signs not just individual records, but also 
pairs of adjacent records


New concern: Zone enumeration


Information gathering is a typical first step in an attack


Individual DNS records are not meant to be secret. But, we do 
not want DNS to help an adversary recover all domain names 
in a zone from an honest name server.



DNSSEC

NSEC3: Tries to prevent zone enumeration using a simple variation 
on NSEC


Signed record pairs use H(domain-name), instead of domain 
name, where H is meant to be a random oracle


Default hash function used is SHA1!


Still allows enumerating H(domain-name)


Then, can use an offline attack for zone-enumeration (as domain 
names are structured, and may be guessed)


Question: An efficient way to prove that an entry is missing, 
without revealing anything else?

Still in the current standard, 
from 2013, though SHA1 
considered weak since 2005



DNSSEC
Question: An efficient way to prove that an entry is missing, 
without revealing anything else?


A recent proposal: NSEC5


Using “Verifiable Random Functions” (VRF)


VRF is a PRF, with an additional public-key (SK & PK generated 
honestly)


Remains pseduorandom even given public-key


SK allows one to give proof that FSK(x) = y, without revealing 
SK. Proof can be verified using a PK.


A Zero-Knowledge proof!


NSEC5 proposes a Random Oracle based VRF (assuming DDH)



DNSSEC
Using a VRF to protect against zone-enumeration


Instead of H(domain name), use FSK(domain name)


For a missing entry for a query Q, return:


Y, and a VRF proof that FSK(Q) = Y


A pair of consecutive entries (Y1, Y2), signed by zone-
owner, such that Y1 < Y < Y2


Name server needs the VRF key SK (generated by the zone-
owner) to compute FSK(Q) and the proof. But does not have 
access to the signing key.


Adversary querying an honest name server only learns the 
presence/absence of that entry


Corrupt name server learns all entries, and can also refuse 
to answer queries, but it cannot give a wrong response



VRF
How to build a VRF?


Original notion [MRV’99] requires security even if PK is 
generated by the adversary


Constructions from RSA and bilinear pairings, with no random 
oracles


NSEC5 based on the discrete log assumption and a random oracle 
based non-interactive ZK proof


(SK,PK) = (y, Y=gy) and Fy(Q) = H’( Cy ), where C=H(Q)


H’ ensures pseudorandomness


Proof includes D=Cy and a ZK proof of equality of discrete 
logs for  (g,Y) and (C,D)


i.e., ∃y s.t. gy = Y and Cy = D



Honest-Verifier ZK Proofs
ZK Proof of knowledge of discrete log of A=gr 


This can be used to prove knowledge of the message in 
an El Gamal encryption (A,B) = (gr, m Yr)


P→V:  U := gu ; V→P: v ;  P→V: w := rv + u  ;  
V checks: gw  = AvU


Proof of Knowledge:

Firstly, gw = AvU  ⇒  w = rv+u, where U = gu


If after sending U, P could respond to two different 
values of v: w1 = rv1 + u and w2 = rv2 + u, then can 
solve for r


HVZK: simulation picks w, v first and sets U = gw/Av



HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier


e.g. in PoK of discrete log, simulator picks (v,w) first and 
computes U (without knowing u). Relies on verifier to pick v 
independent of U.


Special soundness: given (U,v,w) and (U,v’,w’) s.t. v≠v’ and both 
accepted by verifier, can derive a witness (in stand-alone setting)


e.g. solve r from w=rv+u and w’=rv’+u (given v,w,v’,w’)


Implies soundness: for each U s.t. prover has significant 
probability of being able to convince, can extract r from the 
prover with comparable probability (using “rewinding”)



Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),  
i.e., Y = gr and D = Cr [Chaum-Pederson]


Can be used to prove equality of two El Gamal encryptions 
(A,B) & (A’,B’) w.r.t public-key (g,Y): set (C,D) := (A/A’,B/B’)


P→V: (U,M) := (gu,Cu); V→P: v ; P→V: w := rv+u ;  
V checks: gw = YvU and Cw = DvM


Proof of Knowledge:

gw=YvU, Cw=DvM  ⇒ w = rv+u = r’v+u’  
where U=gu, M=gu’ and Y=gr, D=Cr’


If after sending (U,M) P could respond to two different values 
of v: rv1 + u = r’v1 + u’ and rv2 + u = r’v2 + u’, then r=r’


HVZK: simulation picks w, v first and sets U=gw/Av, M=Cw/Dv



Fiat-Shamir Heuristic
Limitation: Honest-Verifier ZK does not guarantee ZK when 
verifier is actively corrupt


Can be fixed by implementing the verifier using MPC


If verifier is a public-coin protocol -- i.e., only picks 
random elements publicly -- then MPC only to generate 
random coins


Fiat-Shamir Heuristic: random coins from verifier defined 
as R(trans), where R is a random oracle and trans is the 
transcript of the proof so far


Also, removes need for interaction!



VRF

NSEC5 VRF based on the discrete log assumption and a random 
oracle based non-interactive ZK proof


(SK,PK) = (y, Y=gy) and Fy(Q) = H’( Cy ), where C=H(Q)


H’ ensures pseudorandomness


Proof includes D=Cy and a ZK proof of equality of discrete 
logs for  (g,Y) and (C,D)


i.e., ∃y s.t. gy = Y and Cy = D


HVZK made non-interactive using the Fiat-Shamir heuristic


(C,D) can be simulated as (gr,Yr) since H random oracle



DNSSEC

Root Zone Signing Key (ZSK) is currently managed by Verisign


The corresponding public key is signed by ICANN’s Key Signing 
Key (KSK)


ZSK renewed frequently (about twice every month), and gets 
signed in batches once every 3 months, in an elaborate Key 
Signing Ceremony


“Activation data” needed to use KSK in the ceremony is  
3-out-of-7 secret-shared


KSK backed up encrypted, and the encryption key is  
5-out-of-7 secret-shared



IETF Standards for securing the internet


TLS for transport layer security


Extensions that aim to add security to the original (insecure) 
protocols used at the internet layer


IPsec, BGPsec, DNSSEC


Also IEEE 802 standards at the link layer: MACsec (MAC meets 
MAC), protocols extending IETF’s “Extensible Authentication 
Protocol” (EAP) like WPA2


Complex standards that focus on efficiency, convenience, 
backward compatibility (given the millions of devices using older 
protocols), feasibility of deployment etc.

Summary


