
IPsec, BGPsec, DNSSEC
Lecture 18

And a bit of Zero-Knowledge Proofs

TCP/IP: Developed in the 70’s

IP: at the internet layer.

Handles addressing and routing

TCP: at the transport layer.

Setting up channels (between
ports), with traffic control, error-
correction etc.

Link layer (e.g., ethernet,wifi) and
Application layer (e.g., web, e-mail) are
too specific for TCP/IP

Interfaces: Media Access Controller
(MAC) and ports

Internet Protocol Suite

en.wikipedia.org/wiki/Internet_protocol_suite

Some important protocols at the application layer help IP

Domain Name Service (DNS)

Translating names to IP addresses

Routing: whom to forward a packet to

Two-level Routing

Border Gateway Protocol (BGP): Routing across
“Autonomous Systems” (AS)

Routing within an AS: Various protocols

Internet Protocol Suite

Originally, TCP/IP designed assuming cooperating nodes

Focus on speed, scalability, inter-operability. No authentication,
no encryption.

Transport Layer can implement secure channels even if the lower
levels of the network are adversarial (TLS)

But if the network is arbitrarily adversarial, cannot prevent
Denial of Service

Also, secure channels don’t hide traffic (source/destination,
rate of communication)

IPsec — and authenticated versions of DNS, BGP — to make the
network less adversarial. (But does not try to anonymise traffic.)

Importantly, implement authenticated channels. (IPsec also
provides the option of encryption.)

Internet Protocol Suite

IPsec
Four components:

Internet Key Exchange (IKE): public-key phase to establish
symmetric keys for the remaining components.

Relies on certificates (from certificate authorities)

Uses Diffie-Hellman key-exchange

Authentication Header (AH): MAC

On top of the entire IP packet (including headers)

Uses HMAC with SHA2, SHA1 or MD5 as the
compression function. (Collision in compression function
not known to translate to an attack on HMAC.)

Encapsulating Security Payload (ESP): SKE

AH on top of ESP: Encrypt-then-MAC ✓

IP Payload Compression

BGP
All IP addresses distributed among ~56000 ASes, including large
(Tier 1) internet service providers, smaller ISPs, large and small
institutions and corporations

Routing across “ASes” based on what they advertise to each other

Each AS re-advertises routes that it already learned

Each AS uses a (business or optimisation) policy to choose a route
from many advertised to it

A corrupt AS can send bogus routing information to another
AS, and make it forward packets to it

The corrupt AS may analyse or drop (some of) the traffic
sent to it

Several examples of incidents, sometimes resulting from
misconfiguration, leading to outages

BGPsec
An important class of attacks is when an AS advertises that it
has an IP range (i.e., IP prefix) within it

AS “originates” the IP range

Makes it more likely for another AS to use this route to the
targeted IP range

Even more likely, if it announces route to sub-ranges as
ASes typically favour more specific IP ranges that contain
the destination IP

Route Origin Authorization (ROA): require a certificate from an
authority when originating an IP range

Uses “Resource PKI,” rooted at “Regional Internet Registries”

AS will accept only paths that end in a validated origin

BGPsec

Using Route Origin Authorisation does not validate the entire path
being advertised

BGPsec requires each step in the path to be authorised, by the
destination of that step (except the last step to an IP range,
which is certified by an authority)

If Regional Internet Registries are trusted (and their keys
known), then an honest AS will not use an “invalid” route

Cannot prevent ASes from advertising legitimate paths and
then dropping traffic routed through them

Or colluding ASes to pretend there is a direct edge (one-hop
path) between them

DNS
Ddomain names (an.example.com) need to be translated to IP
addresses (32 bit IPv4 address like 93.184.216.34 or 128 bit IPv6
address 9abc:def0:1234:5678:90ab:cdef:0123:4567)

Solution: Domain Name servers which respond to a domain name
with an IP address

Problem: An adversary can respond to any DNS query!

Causes DoS. Facilitates traffic analysis. And, if no transport
layer security, serious problem, which will never be detected!

Easy fix: DNS-over-TLS (not common yet)

Additional Problem: Name servers could be corrupt!

Solution: store and return signed records, signed by the zone-
owner. Secure against corrupt name servers. (And, provides
authenticity — but not secrecy — even without TLS.)

DNSSEC
NSEC: store and return signed records, signed by the zone-owner

But what if the name server says no record available?

Need to verify that!

Simple idea: server should return two consecutive entries (in
sorted order) and show that they are consecutive

Zone-owner signs not just individual records, but also
pairs of adjacent records

New concern: Zone enumeration

Information gathering is a typical first step in an attack

Individual DNS records are not meant to be secret. But, we do
not want DNS to help an adversary recover all domain names
in a zone from an honest name server.

DNSSEC

NSEC3: Tries to prevent zone enumeration using a simple variation
on NSEC

Signed record pairs use H(domain-name), instead of domain
name, where H is meant to be a random oracle

Default hash function used is SHA1!

Still allows enumerating H(domain-name)

Then, can use an offline attack for zone-enumeration (as domain
names are structured, and may be guessed)

Question: An efficient way to prove that an entry is missing,
without revealing anything else?

Still in the current standard,
from 2013, though SHA1
considered weak since 2005

DNSSEC
Question: An efficient way to prove that an entry is missing,
without revealing anything else?

A recent proposal: NSEC5

Using “Verifiable Random Functions” (VRF)

VRF is a PRF, with an additional public-key (SK & PK generated
honestly)

Remains pseduorandom even given public-key

SK allows one to give proof that FSK(x) = y, without revealing
SK. Proof can be verified using a PK.

A Zero-Knowledge proof!

NSEC5 proposes a Random Oracle based VRF (assuming DDH)

DNSSEC
Using a VRF to protect against zone-enumeration

Instead of H(domain name), use FSK(domain name)

For a missing entry for a query Q, return:

Y, and a VRF proof that FSK(Q) = Y

A pair of consecutive entries (Y1, Y2), signed by zone-
owner, such that Y1 < Y < Y2

Name server needs the VRF key SK (generated by the zone-
owner) to compute FSK(Q) and the proof. But does not have
access to the signing key.

Adversary querying an honest name server only learns the
presence/absence of that entry

Corrupt name server learns all entries, and can also refuse
to answer queries, but it cannot give a wrong response

VRF
How to build a VRF?

Original notion [MRV’99] requires security even if PK is
generated by the adversary

Constructions from RSA and bilinear pairings, with no random
oracles

NSEC5 based on the discrete log assumption and a random oracle
based non-interactive ZK proof

(SK,PK) = (y, Y=gy) and Fy(Q) = H’(Cy), where C=H(Q)

H’ ensures pseudorandomness

Proof includes D=Cy and a ZK proof of equality of discrete
logs for (g,Y) and (C,D)

i.e., ∃y s.t. gy = Y and Cy = D

Honest-Verifier ZK Proofs
ZK Proof of knowledge of discrete log of A=gr

This can be used to prove knowledge of the message in
an El Gamal encryption (A,B) = (gr, m Yr)

P→V: U := gu ; V→P: v ; P→V: w := rv + u ;  
V checks: gw = AvU

Proof of Knowledge:

Firstly, gw = AvU ⇒ w = rv+u, where U = gu

If after sending U, P could respond to two different
values of v: w1 = rv1 + u and w2 = rv2 + u, then can
solve for r

HVZK: simulation picks w, v first and sets U = gw/Av

HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier

e.g. in PoK of discrete log, simulator picks (v,w) first and
computes U (without knowing u). Relies on verifier to pick v
independent of U.

Special soundness: given (U,v,w) and (U,v’,w’) s.t. v≠v’ and both
accepted by verifier, can derive a witness (in stand-alone setting)

e.g. solve r from w=rv+u and w’=rv’+u (given v,w,v’,w’)

Implies soundness: for each U s.t. prover has significant
probability of being able to convince, can extract r from the
prover with comparable probability (using “rewinding”)

Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),  
i.e., Y = gr and D = Cr [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions
(A,B) & (A’,B’) w.r.t public-key (g,Y): set (C,D) := (A/A’,B/B’)

P→V: (U,M) := (gu,Cu); V→P: v ; P→V: w := rv+u ;  
V checks: gw = YvU and Cw = DvM

Proof of Knowledge:

gw=YvU, Cw=DvM ⇒ w = rv+u = r’v+u’  
where U=gu, M=gu’ and Y=gr, D=Cr’

If after sending (U,M) P could respond to two different values
of v: rv1 + u = r’v1 + u’ and rv2 + u = r’v2 + u’, then r=r’

HVZK: simulation picks w, v first and sets U=gw/Av, M=Cw/Dv

Fiat-Shamir Heuristic
Limitation: Honest-Verifier ZK does not guarantee ZK when
verifier is actively corrupt

Can be fixed by implementing the verifier using MPC

If verifier is a public-coin protocol -- i.e., only picks
random elements publicly -- then MPC only to generate
random coins

Fiat-Shamir Heuristic: random coins from verifier defined
as R(trans), where R is a random oracle and trans is the
transcript of the proof so far

Also, removes need for interaction!

VRF

NSEC5 VRF based on the discrete log assumption and a random
oracle based non-interactive ZK proof

(SK,PK) = (y, Y=gy) and Fy(Q) = H’(Cy), where C=H(Q)

H’ ensures pseudorandomness

Proof includes D=Cy and a ZK proof of equality of discrete
logs for (g,Y) and (C,D)

i.e., ∃y s.t. gy = Y and Cy = D

HVZK made non-interactive using the Fiat-Shamir heuristic

(C,D) can be simulated as (gr,Yr) since H random oracle

DNSSEC

Root Zone Signing Key (ZSK) is currently managed by Verisign

The corresponding public key is signed by ICANN’s Key Signing
Key (KSK)

ZSK renewed frequently (about twice every month), and gets
signed in batches once every 3 months, in an elaborate Key
Signing Ceremony

“Activation data” needed to use KSK in the ceremony is  
3-out-of-7 secret-shared

KSK backed up encrypted, and the encryption key is  
5-out-of-7 secret-shared

IETF Standards for securing the internet

TLS for transport layer security

Extensions that aim to add security to the original (insecure)
protocols used at the internet layer

IPsec, BGPsec, DNSSEC

Also IEEE 802 standards at the link layer: MACsec (MAC meets
MAC), protocols extending IETF’s “Extensible Authentication
Protocol” (EAP) like WPA2

Complex standards that focus on efficiency, convenience,
backward compatibility (given the millions of devices using older
protocols), feasibility of deployment etc.

Summary

