
Crypto with Passwords
Lecture 19  

Q&A

Password or passphrase: Low-entropy shared secret

Typical goal: client authenticating to server, without being
tied to a device holding a cryptographic key. On
authentication, set up a session key.

Also, often Mutual Authentication (if server/client can’t/doesn’t
want to use certificates to verify server’s authenticity)

Cannot get “negligible” security error: password can be guessed
with some significant probability

Goal: allow only an online guessing (dictionary) attack. Prevent
offline dictionary attacks.

Or if server compromised, still somewhat protect the
passwords, by allowing only a slow offline dictionary attack

Passwords

Common scenario: client only has a password rather than a key.
Server has some information derived from client’s password

They will on-the-fly generate a session key from the password,
and interact using it

Note: Client may not a priori know if the server is genuine

Requires the key to be as good as random, up to the probability
that the adversary can guess the password and interact with
the server itself

Rate/number of attempts would be limited, so online
dictionary attack would be OK

Simple solution in the random oracle model: Key = H(passwd)

Note: Standards here often call H a “PRF” as not only
collision resistance, but also pseudo randomness is important

Key from Password

Simple solution in the random oracle model: Key = H(passwd)

But if the password server is compromised an attacker can
launch an offline dictionary attack

Typically quite feasible to discover many passwords

Attacker may possess a “Rainbow Table” — precomputed
hashes of a dictionary — and can quickly recover almost all
the stored passwords

Typical solutions

Salting prevents Rainbow Table attacks: Key = H(passwd,salt)
where salt is a long random string (sent to the client)

To make offline dictionary attack harder, use (moderately)
hard hash functions

Key from Password

Idea: computing H(⋅) should be moderately hard, so that the
attacker is slowed down

Iterated hash functions

e.g., PBKDF2 in RSA PKCS #5 (version 2):  
H(IV,msg) treated like a PRF, with IV being a key.  
Iterate as U1 = H(Passwd,Salt), Ui+1 = H(Passwd,Ui).  
Output length extended using “counter mode”.

WPA2: between an Authenticator (server) and a Supplicant
(client), where they share a “Pre-Shared Key”:  
PSK = PBKDF2(hash = HMAC-SHA1, #iterations = 4096,  
 msg = Passwd, salt = SSID, output length = 256) 
“Transient Key” derived from PSK, nonces exchanged, and mac
addresses. Only nonces are exchanged between server & client. 

Key from Password

HMAC
HMAC: Hash-based MAC

Essentially built from a compression
function f

If keys K1, K2 independent (called
NMAC), then secure MAC if: f is  
a fixed input-length MAC & the
Merkle-Damgård iterated-hash is a
weak-CRHF

In HMAC (K1,K2) derived from (K’,K’’),
in turn heuristically derived from a
single key K. If f is a (weak kind of)
PRF K1, K2 can be considered
independent

K’’

f

IV

T

M

K’

f

IV

m1 mt

...f f f

|m|

f

K2

K1

RE
CA

LL

While iterated hashing slows down attack in software, much
faster custom hardware (a.k.a ASIC) is not too expensive

Solution (on going research): Memory Hard Functions

Fast memory is still very expensive

So try to make the function require large amounts of
memory.

Key from Password

No forward secrecy in WPA2!

If password is revealed past sessions can be decrypted

Transient key is derived from password and publicly known
values (nonces exchanged)

Solution: Use keys from password only for authentication
and use key exchange to derive encryption keys

Password-Authenticated Key Exchange (PAKE)

Key from Password

Password-Authenticated Key Exchange

Agree on a secret symmetric key, over a network

Client has a password, and server has related information

Some considerations

A session is compromised if the session key is not
pseudorandom to the adversary

Adversary can interact with the server, or with the client, or
with both, concurrently in multiple sessions using the same
password

Adversary may learn a session key in one session, but that
shouldn’t compromise the keys in other sessions

Adversary may corrupt the client or sever (learning password
information), but this shouldn’t compromise past sessions

PAKE

Several constructions, starting in early 90’s, providing varying
levels of security

Typical construction uses H(passwd) to mask a DDH key-exchange

Due to DDH security, eavesdropping adversary doesn’t learn
the key

Without password, an adversary playing as client/server
doesn’t learn the key accepted by its honest partner

Example: Server stores (v,s) where v = gπ with π = H(s,pwd)  
client→server: gx ; server→client: u, v+gy ;  
K =(gy)x+uπ = gxy⋅vuy = gxy⋅guπy. Key = H(K).

Without adaptively chosen u, an attacker knowing v only
can succeed by sending gx/v in the first step

PAKE Protocols

Protocols currently used in practice are proven secure in the
random oracle model (under multiple security definitions)

Standard model protocols are known

Need more comprehensive definitions to address concerns of
composition: e.g., when multiple (related) passwords are used with
multiple servers

Universally Composable security (REAL/IDEAL security definition)

In the IDEAL world, a trusted party comparing passwords
and allocating random keys. Passwords come from the
environment

But not realisable without a setup (e.g., random oracle, or
common random string)

PAKE Protocols

