
Miscellany!
Lecture 20

The Last Lecture!

“Post-Quantum Crypto” 
candidates

Public-Key Crypto Maths
Initially public-key crypto was based on hardness of problems in
modular arithmetic and number theory (RSA/factoring, modular
discrete log)

Problems from several other areas, since then

Elliptic curve cryptography (mainstream, currently)

Code-based crypto

Lattice-based crypto

Multivariate Polynomial crypto

Elliptic Curve Crypto
Starting 1985 (by Miller, Koblitz)

Groups where Discrete log (and DDH) is considered much harder
than in modular arithmetic, and hence much smaller groups can be
used.

Given a finite field F, one can define a commutative group G ⊆ F2, as
points (x,y) which lie on an “elliptic curve,” with an appropriately
defined group operation

Different curves yield different groups

Today, most popular PKE schemes use Diffie-Hellman over elliptic
curves specified by various standards.

Pro: Significantly faster!

Con: Which elliptic curves are good?

Code-Based Crypto
Coding theory based, since McEliece crypto system (1978)

A random linear code is specified by a matrix G s.t. a message
x is encoded into a codeword Gx. Can easily check if c is a
codeword, but seems hard to check if c is close in Hamming
distance to a codeword.

Structured linear codes exist for which error correcting
algorithms are known

Idea: Masquerade structured codes to look random. Secret key
reveals the original structured code

Not commonly used today, as large key sizes and slow
computation

Lattice-Based Crypto

Lattice: set of (real) vectors obtained by linear combination of
basis vectors using only integer coefficients

Hard problems related to finding short vectors in the lattice

Original use of lattices: to break a candidate for PKE (called the
“Knapsack cryptosystem”) by Merkle and Hellman

Constructions: NTRU (1996), Ajtai/Ajtai-Dwork (1996/97), …

More recent constructions based on Learning With Errors (LWE)
over Zq which is hard if some lattice problems are

(A, Ax + e) is pseudorandom when e is a “short” noise vector

Lattice-Based Crypto: PKE
NTRU approach: Private key is a “good” basis, and the public
key is a “bad basis”

Worst basis (one that can be efficiently computed from any
basis): Hermite Normal Form (HNF) basis

To encrypt a message, encode it (randomized) as a short
“noise vector” u. Output c = v+u for a lattice point v that is
chosen using the public basis

To decrypt, use the good basis to find v as the closest
lattice vector to c, and recover u=c-v

NTRU Encryption: use lattices with succinct basis

Conjectured to be CPA secure for appropriate lattices. No
security reduction known to simple lattice problems

An LWE based approach:

Public-key is (A,P) where P=AS+E, for random matrices (of
appropriate dimensions) A and S, and a noise matrix E over Zq

To encrypt an n bit message, first map it to a vector v in (a

sparse sub-lattice of) Zq
n; pick a random vector a with small

coordinates; ciphertext is (u,c) where u = ATa and c = PTa + v

Decryption using S: recover message from c - STu = v + ETa

Allows a small error probability; can be made negligible by
first encoding the message using an error correcting code

CPA security: By LWE assumption, the public-key is
indistinguishable from random; and, encryption under random
(A,P) loses essentially all information about the message

Lattice-Based Crypto: PKE

Quantum Cryptography
Quantum information: Using microscopic physical state of “quantum
systems” (spin of atoms/sub-atomic particles, polarization of
photons etc.) to encode information (and generate randomness)

Communicated over special “quantum channels” (optic fibers,
free space...)

Quantum Key-Distribution: Agreeing on a secret key over a public

(quantum+classical) channel, without computational restrictions

on the adversary

Needs authenticated communication between the two parties

Can use a short key for (information-theoretically secure) MAC
to bootstrap the communication

QKD History

Bennett and Brassard proposed BB84 in 1984

Eavesdropping on a quantum channel will change the qubits
that the adversary observes

Similar ideas by Wiesner in early 1970s

QKD scheme based on “entanglement” by Ekert in 1990

Several other schemes by now

Quantum Key Distribution
Originally restricted definitions/proofs

e.g., in BB84 Eve measured/transformed each transmitted
qubit separately

Didn’t consider composability (e.g., key may be used for
other tasks later, and attack may not be separately on QKD
and subsequent use)

Universally Composable Security for QKD (2005)

Originally several idealizations required for security: crucially
depends on reliable quantum channels and devices

Many idealizations can be removed using quantum error-
correction, quantum repeaters, self-testing devices

Commercial products available

End-to-End Encryption
In typical web-based applications (e.g., email services), servers are
privy to all the information used by the clients

TLS only protects against outside eavesdroppers

End-to-end encryption/authentication: Don’t trust the server

e.g., OpenPGP standard for email

Users need to distribute their public-keys (key-signing
parties, web-of-trust)

Many chat applications using the “Signal protocol”

e.g., WhatsApp, Google Allo (incognito mode), Signal, Facebook
Messenger (secret conversations)

End-to-End Encryption
Security considerations

Forward secrecy: avoid using long term encryption keys

Keep updating the key after each message, deleting old ones,
so that the current key doesn’t reveal past keys (“Ratcheting”)

Plausible Deniability: No one should be able prove to anyone else
that the sender actually sent a message.

Messages are signed using MAC keys that are shared, so
receiver can forge MACs. Further, MAC key revealed publicly
in the next round, so anyone could have forged MACs.

Several “usability” considerations in chat applications

e.g., Key-exchange requires a Receiver → Sender message.  
OK in a conversation, but a problem for an offline message.

In the Signal Protocol, users leave several public-keys (for
one-time use) on the server for senders to use.

Anonymity
Encryption does not mask the fact that a communication occurred

In IPsec tunnel mode (e.g., when using VPN), entire IP packets
(including headers) are communicated under encryption

But routers themselves can observe source/destination of the
packets

Services that facilitate anonymous routing

TOR (based on Onion Routing): sender selects a sequence of
routers, with each knowing only its two neighbours in the path.

If observing the source and the destination, remains possible to
correlate incoming and outgoing channels via timing (no
buffering for efficiency)

Leakage from Traffic Rate

Traffic rate can leak a lot of information about the messages

Reading key-strokes from SSH via timing attacks

Identifying Netflix movies being played, from the sizes of
video segments and the rate at which they are
communicated (the compressed sizes depend on the movie)

Recovering spoken words from encrypted Voice-over-IP
services

IDEAL model for encryption allowed this explicitly!

Side-channel Attacks
Various physical signals leak information about the state
(including keys and internal randomness) of the algorithms

Timing: can be exploited even remotely

Power-monitoring: if connected to the same electrical
circuitry. Reveals how code executed e.g., taking/not taking
conditional branches.

Acoustic and/or Electromagnetic signals: with an antenna

Cold boot/Data remnance attacks…

More attacks by actively tampering

Engineering solution: mitigate the side-channels

Leakage-Resilient crypto: can’t predict/prevent all side-channels,
so design assuming a low bandwidth unknown side-channel

Summary
Many crypto concepts in this course

High-level primitives: SKE, PKE (perfect/CPA/CCA), MAC, Digital
Signatures, …

Low-level primitives: Secret-Sharing, OWF, PRG, PRF, Trapdoor
OWF, 2UHF, CRHF, …

Security Models: IND/SIM, Random Oracle model, …

A little bit of the math: DDH, RSA, …

Crucial to practical network security

Major (but lessening) gaps between theory and practice

Several other components in network/information security: human
behaviour (phishing), software engineering (bugs), formal methods
(for security policies, high-level protocols), machine-learning (for
intrusion detection), securing hardware, …

That’s All Folks!

