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The Last Lecture!



“Post-Quantum Crypto” 
candidates

Public-Key Crypto Maths
Initially public-key crypto was based on hardness of problems in 
modular arithmetic and number theory (RSA/factoring, modular 
discrete log)


Problems from several other areas, since then


Elliptic curve cryptography (mainstream, currently)


Code-based crypto


Lattice-based crypto


Multivariate Polynomial crypto



Elliptic Curve Crypto
Starting 1985 (by Miller, Koblitz)


Groups where Discrete log (and DDH) is considered much harder 
than in modular arithmetic, and hence much smaller groups can be 
used.


Given a finite field F, one can define a commutative group G ⊆ F2, as 
points (x,y) which lie on an “elliptic curve,” with an appropriately 
defined group operation


Different curves yield different groups


Today, most popular PKE schemes use Diffie-Hellman over elliptic 
curves specified by various standards.


Pro: Significantly faster!


Con: Which elliptic curves are good?



Code-Based Crypto
Coding theory based, since McEliece crypto system (1978)


A random linear code is specified by a matrix G s.t. a message 
x is encoded into a codeword Gx. Can easily check if c is a 
codeword, but seems hard to check if c is close in Hamming 
distance to a codeword.


Structured linear codes exist for which error correcting 
algorithms are known


Idea: Masquerade structured codes to look random. Secret key 
reveals the original structured code


Not commonly used today, as large key sizes and slow 
computation



Lattice-Based Crypto

Lattice: set of (real) vectors obtained by linear combination of 
basis vectors using only integer coefficients


Hard problems related to finding short vectors in the lattice


Original use of lattices: to break a candidate for PKE (called the 
“Knapsack cryptosystem”) by Merkle and Hellman


Constructions: NTRU (1996), Ajtai/Ajtai-Dwork (1996/97), … 


More recent constructions based on Learning With Errors (LWE) 
over Zq which is hard if some lattice problems are


(A, Ax + e) is pseudorandom when e is a “short” noise vector



Lattice-Based Crypto: PKE
NTRU approach: Private key is a “good” basis, and the public 
key is a “bad basis”


Worst basis (one that can be efficiently computed from any 
basis): Hermite Normal Form (HNF) basis


To encrypt a message, encode it (randomized) as a short 
“noise vector” u. Output c = v+u for a lattice point v that is 
chosen using the public basis


To decrypt, use the good basis to find v as the closest 
lattice vector to c, and recover u=c-v


NTRU Encryption: use lattices with succinct basis


Conjectured to be CPA secure for appropriate lattices. No 
security reduction known to simple lattice problems



An LWE based approach:


Public-key is (A,P) where P=AS+E, for random matrices (of 
appropriate dimensions) A and S, and a noise matrix E over Zq


To encrypt an n bit message, first map it to a vector v in (a 

sparse sub-lattice of) Zq
n; pick a random vector a with small 

coordinates; ciphertext is (u,c) where u = ATa and c = PTa + v


Decryption using S: recover message from c - STu = v + ETa

Allows a small error probability; can be made negligible by 
first encoding the message using an error correcting code


CPA security: By LWE assumption, the public-key is 
indistinguishable from random; and, encryption under random 
(A,P) loses essentially all information about the message

Lattice-Based Crypto: PKE



Quantum Cryptography
Quantum information: Using microscopic physical state of “quantum 
systems” (spin of atoms/sub-atomic particles, polarization of 
photons etc.) to encode information (and generate randomness)


Communicated over special “quantum channels” (optic fibers, 
free space...)


Quantum Key-Distribution: Agreeing on a secret key over a public 

(quantum+classical) channel, without computational restrictions 

on the adversary


Needs authenticated communication between the two parties


Can use a short key for (information-theoretically secure) MAC 
to bootstrap the communication



QKD History

Bennett and Brassard proposed BB84 in 1984


Eavesdropping on a quantum channel will change the qubits 
that the adversary observes


Similar ideas by Wiesner in early 1970s


QKD scheme based on “entanglement” by Ekert in 1990


Several other schemes by now



Quantum Key Distribution
Originally restricted definitions/proofs


e.g., in BB84 Eve measured/transformed each transmitted 
qubit separately


Didn’t consider composability (e.g., key may be used for 
other tasks later, and attack may not be separately on QKD 
and subsequent use)


Universally Composable Security for QKD (2005)


Originally several idealizations required for security: crucially 
depends on reliable quantum channels and devices


Many idealizations can be removed using quantum error-
correction, quantum repeaters, self-testing devices 


Commercial products available



End-to-End Encryption
In typical web-based applications (e.g., email services), servers are 
privy to all the information used by the clients


TLS only protects against outside eavesdroppers


End-to-end encryption/authentication: Don’t trust the server


e.g., OpenPGP standard for email


Users need to distribute their public-keys (key-signing 
parties, web-of-trust)


Many chat applications using the “Signal protocol”


e.g., WhatsApp, Google Allo (incognito mode), Signal, Facebook 
Messenger (secret conversations)



End-to-End Encryption
Security considerations


Forward secrecy: avoid using long term encryption keys

Keep updating the key after each message, deleting old ones, 
so that the current key doesn’t reveal past keys (“Ratcheting”)


Plausible Deniability: No one should be able prove to anyone else 
that the sender actually sent a message.


Messages are signed using MAC keys that are shared, so 
receiver can forge MACs. Further, MAC key revealed publicly 
in the next round, so anyone could have forged MACs.


Several “usability” considerations in chat applications

e.g., Key-exchange requires a Receiver → Sender message.  
OK in a conversation, but a problem for an offline message.


In the Signal Protocol, users leave several public-keys (for 
one-time use) on the server for senders to use.



Anonymity
Encryption does not mask the fact that a communication occurred


In IPsec tunnel mode (e.g., when using VPN), entire IP packets 
(including headers) are communicated under encryption


But routers themselves can observe source/destination of the 
packets


Services that facilitate anonymous routing


TOR (based on Onion Routing): sender selects a sequence of 
routers, with each knowing only its two neighbours in the path.


If observing the source and the destination, remains possible to 
correlate incoming and outgoing channels via timing (no 
buffering for efficiency)



Leakage from Traffic Rate

Traffic rate can leak a lot of information about the messages


Reading key-strokes from SSH via timing attacks


Identifying Netflix movies being played, from the sizes of 
video segments and the rate at which they are 
communicated (the compressed sizes depend on the movie)


Recovering spoken words from encrypted Voice-over-IP 
services


IDEAL model for encryption allowed this explicitly!



Side-channel Attacks
Various physical signals leak information about the state 
(including keys and internal randomness) of the algorithms


Timing: can be exploited even remotely


Power-monitoring: if connected to the same electrical 
circuitry. Reveals how code executed e.g., taking/not taking 
conditional branches.


Acoustic and/or Electromagnetic signals: with an antenna


Cold boot/Data remnance attacks…  


More attacks by actively tampering


Engineering solution: mitigate the side-channels


Leakage-Resilient crypto: can’t predict/prevent all side-channels, 
so design assuming a low bandwidth unknown side-channel



Summary
Many crypto concepts in this course


High-level primitives: SKE, PKE (perfect/CPA/CCA), MAC, Digital 
Signatures, …


Low-level primitives: Secret-Sharing, OWF, PRG, PRF, Trapdoor 
OWF, 2UHF, CRHF, …


Security Models: IND/SIM, Random Oracle model, …


A little bit of the math: DDH, RSA, … 


Crucial to practical network security


Major (but lessening) gaps between theory and practice


Several other components in network/information security: human 
behaviour (phishing), software engineering (bugs), formal methods 
(for security policies, high-level protocols), machine-learning (for 
intrusion detection), securing hardware, … 



That’s All Folks!


