Cryptography and Network Security
 Lecture 1

Our first encounter with secrecy: Secret-Sharing

Secrecy

- Cryptography is all about "controlling access to information"
- Access to learning and/or influencing information
- One of the aspects of access control is secrecy

A Game

- A "dealer" and two "players" Alice and Bob
- Dealer has a message, say two bits mım2
- She wants to "share" it among the two players so that neither player by herself/himself learns anything about the message, but together they can find it
- Bad idea: Give m_{1} to Alice and m_{2} to Bob
- Other ideas?

Sharing a bit

- To share a bit m, Dealer picks a uniformly random bit b and gives $a:=m \oplus b$ to Alice and b to Bob
- Bob learns nothing (b is a random bit)
- Alice learns nothing either: for each possible value of m (0 or 1), a is a random bit (0 w.p. $1 / 2,1$ w.p. $1 / 2$) $\left\{\begin{array}{l}m=0 \rightarrow(a, b)=(0,0) \text { or }(1,1) \\ m=1 \rightarrow(a, b)=(1,0) \text { or }(0,1)\end{array}\right.$
- Her view is independent of the message
- Together they can recover m as $a \oplus b$
- Multiple bits can be shared independently: as, $m_{1} m_{2}=\underline{a_{1} a_{2}} \oplus b_{1} b_{2}$
- Note: any one share can be chosen before knowing the message [why?]

Secrecy

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability $1 / 2$, by randomly guessing
- Worse, if they already know something about m, they can do better (Note: we didn't say m is uniformly random!)
- But they could have done this without obtaining the shares
- The shares didn't leak any additional information to either party
- Typical crypto goal: preserving secrecy

Secrecy

- Goal: What Alice (or Bob) knows about the message after seeing her share is the same as what she knew a priori
- What she knows about the message a priori: probability distribution over the message
- For each message $m, \operatorname{Pr}[\mathrm{msg}=\mathrm{m}]$
- What she knows after seeing her share (a.k.a. her view)
- Say view is v . Then new distribution: $\operatorname{Pr}[\mathrm{msg}=\mathrm{m} \mid$ view=v]
- Secrecy: $\forall v, \forall m, \operatorname{Pr}[m s g=m \mid$ view $=v]=\operatorname{Pr}[m s g=m]$
- i.e., view is independent of message
- Equivalently, $\forall \mathrm{v}, \forall \mathrm{m}, \operatorname{Pr}[\mathrm{view}=\mathrm{v} \mid \mathrm{msg}=\mathrm{m}]=\operatorname{Pr}[v i e w=v]$ Determined by the scheme

Secrecy

- Secrecy: $\forall v, \forall m, \operatorname{Pr}[m s g=m \mid$ view $=v]=\operatorname{Pr}[m s g=m]$
- i.e., view is independent of message
- Equivalently, $\forall v, \forall m, \operatorname{Pr}[v i e w=v \mid m s g=m]=\operatorname{Pr}[v i e w=v]$
- i.e., for all possible values of the message, the view is distributed the same way
- Equivalently (why?), $\forall v, \forall m_{1}, m_{2}$, $\operatorname{Pr}\left[v i e w=v \mid \mathrm{msg}=\mathrm{m}_{1}\right]=\operatorname{Pr}\left[v i e w=\mathrm{v} \mid \mathrm{msg}=\mathrm{m}_{2}\right]$

Doesn't involve message distribution at all.

- Important: can't say $\operatorname{Pr}\left[m s g=m_{1} \mid\right.$ view $\left.=v\right]=\operatorname{Pr}\left[m s g=m_{2} \mid\right.$ view $\left.=\mathrm{v}\right]$ (unless the prior is uniform)

Exercise

- Consider the following secret-sharing scheme
- Message space $=\{$ buy, sell, wait $\}$
- buy $\rightarrow(00,00),(01,01),(10,10)$ or $(11,11)$ w/ prob $1 / 4$ each
- sell $\rightarrow(00,01),(01,00),(10,11)$ or $(11,10) \mathrm{w} /$ prob $1 / 4$ each
- wait $\rightarrow(00,10),(01,11),(10,00),(11,01),(00,11),(01,10),(10,01)$ or $(11,00) \mathrm{w} /$ prob $1 / 8$ each
- Reconstruction: Let $\beta_{1} \beta_{2}=$ share $_{\text {Alice }} \oplus$ share $_{\text {Bob }}$. Map $\beta_{1} \beta_{2}$ as follows: $00 \rightarrow$ buy, $01 \rightarrow$ sell, 10 or $11 \rightarrow$ wait
- Is it secure?

Secret-Sharing

- More general secret-sharing
- Allow more than two parties (how?)
- Privileged subsets of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
- Direct applications (distributed storage of data or keys)
- Important component in other cryptographic constructions
- Amplifying secrecy of various primitives
- Secure multi-party computation
- Attribute-Based Encryption
- Leakage resilience ...

Threshold Secret-Sharing

- (n, t)-secret-sharing
- Divide a message m into n shares s_{1}, \ldots, s_{n}, such that
- any t shares are enough to reconstruct the secret
- up to t-1 shares should have no information about the secret
- our previous example: $(2,2)$ secret-sharing e.g., $\left(s_{1}, \ldots, \mathrm{~s}_{-1}\right)$ has the same distribution for every m in the message space

Threshold Secret-Sharing

- Construction: (n, n) secret-sharing

Additive
Secret-Sharing

- Message-space $=$ share-space $=G$, a finite group
- e.g. $G=\mathbb{Z}_{2}$ (group of bits, with xor as the group operation)
- or, $G=\mathbb{Z}_{2}{ }^{d}$ (group of d-bit strings)
- or, $G=\mathbb{Z}_{p}$ (group of integers mod p)
- Share(M):
- Pick s_{1}, \ldots, s_{n-1} uniformly at random from G
- Let $s_{n}=-\left(s_{1}+\ldots+s_{n-1}\right)+M$
- Reconstruct $\left(s_{1}, \ldots, s_{n}\right): M=s_{1}+\ldots+s_{n}$
- Claim: This is an (n, n) secret-sharing scheme [Why?]

Additive Secret-Sharing: Proof

- Share(M):
- Pick s_{1}, \ldots, s_{n-1} uniformly at random from G
- Let $\mathrm{s}_{\mathrm{n}}=\mathrm{M}-\left(\mathrm{s}_{1}+\ldots+\mathrm{s}_{\mathrm{n}-1}\right)$
- Reconstruct($\left.s_{1}, \ldots, s_{n}\right): M=s_{1}+\ldots+s_{n}$
- Claim: Upto $n-1$ shares give no information about M
- Proof: Let $T \subseteq\{1, \ldots, n\},|T|=n-1$. We shall show that $\left\{s_{i}\right\}_{i \in T}$ is distributed the same way (in fact, uniformly) irrespective of what M is.
- For concreteness consider $T=\{2, \ldots, n\}$. Fix any $(n-1)$-tuple of elements in $G,\left(g_{1}, \ldots, g_{n-1}\right) \in G^{n-1}$. To prove $\operatorname{Pr}\left[\left(s_{2}, \ldots, s_{n}\right)=\left(g_{1}, \ldots, g_{n-1}\right)\right]$ is same for all M.
- Fix any M.
- $\left(s_{2}, \ldots, s_{n}\right)=\left(g_{1}, \ldots, g_{n-1}\right) \Leftrightarrow\left(s_{2}, \ldots, s_{n-1}\right)=\left(g_{1}, \ldots, g_{n-2}\right)$ and $s_{1}=M-\left(g_{1}+\ldots+g_{n-1}\right)$.
- So $\operatorname{Pr}\left[\left(s_{2}, \ldots, s_{n}\right)=\left(g_{1}, \ldots, g_{n-1}\right)\right]=\operatorname{Pr}\left[\left(s_{1}, \ldots, s_{n-1}\right)=\left(a, g_{1}, \ldots, g_{n-2}\right)\right]$, $a:=\left(M-\left(g_{1}+\ldots+g_{n-1}\right)\right.$
- But $\operatorname{Pr}\left[\left(s_{1}, \ldots, s_{n-1}\right)=\left(a, g_{1}, \ldots, g_{n-2}\right)\right]=1 /|G| n-1$, since $\left(s_{1}, \ldots, s_{n-1}\right)$ are picked uniformly at random from G
- Hence $\operatorname{Pr}\left[\left(\mathrm{s}_{2}, \ldots, \mathrm{~s}_{n}\right)=\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-1}\right)\right]=1 /|G|^{n-1}$, irrespective of M.

An Application

- Gives a "private summation" protocol

Clients with inputs

- Secure against passive corruption (no colluding set of servers/clients will learn more than what they must) if at least one server stays out of the collusion

Threshold Secret-Sharing

- Construction: $(n, 2)$ secret-sharing
- Message-space $=$ share-space $=$ F, a field (e.g. integers mod a prime)
- Share (M) : pick random r. Let $s_{i}=r \cdot a_{i}+M($ for $i=1, \ldots, n<|F|)$
- Reconstruct($\left.s_{i}, s_{j}\right): r=\left(s_{i}-s_{j}\right) /\left(a_{i}-a_{j}\right) ; M=s_{i}-r \cdot a_{i}$
- Each s_{i} by itself is uniformly distributed, irrespective of M [Why?] Since $a_{i^{-1}}$ exists, exactly one - "Geometric" interpretation solution for $r \cdot a_{i}+M=d$, for every value of d
- Sharing picks a random "line" $y=f(x)$, such that $f(0)=M$. Shares $s_{i}=f\left(a_{i}\right)$.
- s_{i} is independent of M : exactly one line passing through (a_{i}, s_{i}) and ($0, M^{\prime}$) for any secret M^{\prime}

- But can reconstruct the line from two points!

$(n, 2)$ Secret-Sharing: Proof

- Share(M): pick random $r \leftarrow F$. Let $s_{i}=r \cdot a_{i}+M($ for $i=1, \ldots, n<|F|)$
- Reconstruct $\left(s_{i}, s_{j}\right): r=\left(s_{i}-s_{j}\right) /\left(a_{i}-a_{j}\right) ; M=s_{i}-r \cdot a_{i}$
- Claim: Any one share gives no information about M
- Proof: For any $i \in\{1, ., n\}$ we shall show that s_{i} is distributed the same way (in fact, uniformly) irrespective of what M is.
- Consider any $\mathrm{g} \in \mathrm{F}$. We shall show that $\operatorname{Pr}\left[\mathrm{sif}_{\mathrm{i}}=\mathrm{g}\right]$ is independent of M .
- Fix any M.
- For any $g \in F, s_{i}=g \Leftrightarrow r \cdot i+M=g \Leftrightarrow r=(g-M) \cdot a_{i}^{-1}$ (since $a_{i} \neq 0$)
- So, $\operatorname{Pr}\left[s_{i}=g\right]=\operatorname{Pr}\left[r=(g-M) \cdot a_{i}^{-1}\right]=1 /|F|$, since r is chosen uniformly at random

Threshold Secret-Sharing

Shamir Secret-Sharing

- (n, t) secret-sharing in a field F
- Generalizing the geometric/algebraic view: instead of lines, use polynomials
- Share (m) : Pick a random degree t-1 polynomial $f(X)$, such that $f(0)=M$. Shares are $s_{i}=f\left(a_{i}\right)$.
- Random polynomial with $f(0)=M: c_{0}+c_{1} X+c_{2} X^{2}+\ldots+c_{t-1} X^{t-1}$ by picking $c_{0}=M$ and c_{1}, \ldots, c_{t-1} at random.
- Reconstruct $\left(s_{1}, \ldots, s_{t}\right)$: Lagrange interpolation to find $M=c_{0}$
- Need t points to reconstruct the polynomial. Given t-1 points, out of $\left.|F|\right|^{-1}$ polynomials passing through ($0, \mathrm{M}^{\prime}$) (for any M^{\prime}) there is exactly one that passes through the $t-1$ points

Lagrange Interpolation

- Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all \dagger co-efficients)
- t variables: $c_{0}, \ldots, c_{t-1} . \dagger$ equations: $1 . c_{0}+a_{i} \cdot c_{1}+a_{i}^{2} \cdot c_{2}+\ldots a_{i}^{t-1} \cdot c_{t-1}=s_{i}$
- A linear system: Wc=s, where W is a $\dagger x t$ matrix with $i^{\text {th }}$ row, $W_{i}=\left(1 a_{i} a_{i}^{2} \ldots a_{i}^{t-1}\right)$
- W (called the Vandermonde matrix) is invertible
- $c=W^{-1} s$

Today

- Secrecy: if view is independent of the message
- i.e., \forall view, $\forall \mathrm{msg}_{1,} \mathrm{msg}_{2}, \operatorname{Pr}\left[v i e w \mid \mathrm{msg}_{1}\right]=\operatorname{Pr}\left[v i e w \mid \mathrm{msg}_{2}\right]$
- View does not give any additional information about the message, than what was already known (prior)
- Secrecy holds even against unbounded computational power
- Such secrecy not always possible (e.g., no public-key encryption against computationally unbounded adversaries)

