Defining Encryption (ctd.)

Lecture 3
SIM & IND security
Beyond One-Time: CPA security
Computational Indistinguishability



Perfect Secrecy

@ Perfect secrecy: vm, m' e &

o {Enc(mzK)}W—KeyGen = {Enc(m,zK)}K%KeyGen

@ Distribution of the ciphertext |is defined
by the randomness in the key

@ In addition, require correctness
@ vm, K, Dec(Enc(mK) K)=m

@ E.g. One-time pad: 77 = %= C = {0,1}" and
Enc(m,K) = ma@K, Dec(c,K) = ceK

@ More generally 77 = %= C= ¢ (a finite group)

and Enc(m,K) = m+K, Dec(c,K) = c-K

Onetime Encryption
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Same for Enc(b,K).

N

Assuming K uniformly drawn from %
Pr[ Enc(a,K)=x ] = 4,

Pr[ Enc(a,K)=y ] = %,
Pr[ Enc(aK)=z ] = 4




yOneﬁme Encryption

IND-Onetime Security Equiygent
to perfect
@ IND-Onetime Experiment secrecy
- ;
@ Experiment picks a random bit b. It
also runs KeyGen to get a key K Enc(mp,K)
@ Adversary sends two messages mo, |m, v
m; to the experiment .
@ Experiment replies with Enc(my,K)
Mo, My
@ Adversary returns a guess b’ lb’
4 R
@ Experiments outputs 1 iff b'=b b<{0,1}
b'=b?
@ IND-Onetime secure if for every N\

y
adversary, Pr[b’=b] = 1/2 | Yes/No



yOnehme Encryptior: e «

perfect secrecy

SIM-One'I'lme Securlfy + correctness

@ Class of environments which send only one message
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Security of Encryption

Perfect secrecy is too strong for multiple messages (though too
weak in some other respects...)

@ Requires keys as long as the messages

Relax the requirement by restricting to computationally
bounded adversaries (and environments)

Coming up: Formalizing notions of “computational” security (as
opposed to perfect/statistical security)

@ Then, security definitions used for encryption of multiple
messages



Symmetric-Key Encryption

The Syntax
@ Shared-key (Private-key) Encryption

@ Key Generation: Randomized

@ K < %, uniformly randomly drawn from the key-space
(or according to a key-distribution)

@ Encryption: Randomized

@ Enc: 77 x% xR —C. During encryption a fresh random
string will be chosen uniformly at random from ®

@ Decryption: Deterministic

@ Dec: CxK— M



Symmeftric-Key Encryption

Security Definitions

Security of Information Game-based Simulation-based
Encryption theoretic

One-time

Multi-msg

Active/multi-msg

@ CPA: Chosen Plaintext Attack
@ The adversary can influence/choose the messages being encrypted

@ Note: One-time security also allowed this, but for only one message



Symmeftric-Key Encryption
SIM-CPA Security

@ Same as SIM-onetime security, but not restricted to environments
which send only one message. All entities “efficient.”
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Symmetric-Key Encryption

IND-CPA Security IND-CPA +
@ Experiment picks a random bit b. It also co!’rec’rness
runs KeyGen to get a key K A equivalent o

. Wbl . SIM-CPA

@ For as long as Adversary wants

@ Adv sends two messages mo, m;
to the experiment

@ Expt returns Enc(my,K) to the

adversary fo,m:
bl
@ Adversary returns a guess b’ m
@ Experiment outputs 1 iff b'=b [ b;—’{g,?l} J

@ IND-CPA secure if for all “efficient”
adversaries Pr[b’=b] = 1/2 lYeS/ No



Almost Perfect

@ For multi-message schemes we relaxed the “perfect” simulation
requirement to IDEAL = REAL

@ In particular, we settle for “almost perfect” correctness
@ Recall perfect correctness
@ V M, Prc<keyGen enc [ Dec( Enc(m,K), K) =m ] =1
@ Almost perfect correctness: a.k.a. Statistical correctness
@ V m, PrikeyGen, enc [ Dec( Enc(mK), K) =m ] = 1

@ But what is = ?



Feasible Computation

@ In analyzing complexity of algorithms: Rate at which
computational complexity grows with input size

@ e.g. Can do sorting in O(n log n)

@ Only the rough rate considered

@ Exact time depends on the technology —

@ Real question: Do we scale well? How
much more computation will be needed
as the instances of the problem get larger.

@ “Polynomial time” (O(n), O(n2), O(n3), ...)

considered feasible
Log Poly [ Exp



Infeasible Computation

@ "Super-Polynomial time” considered infeasible

@ e.g. 2n, 2+n, nlogin)

@ i.e., as n grows, quickly becomes “infeasibly large”
@ Can we make breaking security infeasible for Eve?

@ What is n (that can grow)?

@ Message size?

@ We need security even if sending only one bit!



Security Parameter

@ A parameter that is part of the encryption scheme
@ Not related fo message size
@ A knob that can be used to set the security level
@ Will denote by k

@ Security guarantees are given asymptotically as a function of
the security parameter




Feasible and Negligible

@ We want to tolerate Eves who have a running time bounded by
some polynomial in k

@ Eve could toss coins: Probabilistic Polynomial-Time (PPT)

@ It is better that we allow Eve high polynomial times too (we'll
typically tolerate some super-polynomial time for Eve)

@ But algorithms for Alice/Bob better be very efficient
@ Eve could be non-uniform: a different strategy for each k

@ Such an Eve should have only a “negligible” advantage (or, should
cause at most a “negligible” difference in the behavior of the
environment in the SIM definition)

@ What is negligible?



Negligibly Small
@ A negligible quantity: As we turn the knob the quantity should

"decrease extremely fast”
@ Negligible: decreases as 1/superpoly(k)

@ i.e., faster than 1/poly(k) for every polynomial

@ e.g.: 2%, 2-7k, k-(logk),

@ Formally: T negligible if vc>0 3ko vk>ko T(k) < 1/ke
@ So that negl(k) X poly(k) = negl’(k)

@ Needed, because Eve can often increase advantage
polynomially by spending that much more time/by seeing
that many more messages



Interpreting Asympfohcs
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Symmeftric-Key Encryption
SIM-CPA Security
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Aside: Indistinguishability

@ Security definitions often refer to indistinguishability of two
distributions: e.g., REAL vs. IDEAL, or Enc(mo) vs. Enc(my)

@ 3 levels of indistinguishability
@ Perfect: the two distributions are identical

@ Computational: for all PPT distinguishers, probability of

the output bit being 1 is only negligibly different in the
two cases

@ Statistical: the two distributions are “statistically close”

@ Hard to distinguish, irrespective of the computational
power of the distinguisher



Statistical Indistinguishability

@ Given two distributions A and B over the same sample space, how well
can a (computationally unbounded) test T distinguish between them?

@ T is given a single sample drawn from A or B

@ How differently does it behave in the two cases?

Statistical Difference (Distance)
@ A(A,B) := max 1 | PrxalT(x)=1] - Prxs[T(x)=1] | jL or Total Variation Distance }

@ Two distribution ensembles {Ax}k, {Bkjx are statistically indistinguishable
from each other if A(A«,Bk) is negligible in k
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Next

@ Constructing (CPA-secure) SKE schemes
@ Pseudorandomness Generator (PRG)
@ One-Way Functions (& OW Permutations)

@ OWP — PRG — (CPA-secure) SKE



