Symmetric-Key Encryption: constructions

Lecture 4 PRG, Stream Cipher

Story So Far

- We defined (passive) security of Symmetric Key Encryption (SKE)
 - SIM-CPA = IND-CPA + almost perfect correctness
 - Restricts to PPT entities
 - Allows negligible advantage to the adversary
- Today: Constructing one-time SKE from Pseudorandomness
- Next time:
 - Pseudorandomness from One-Way Permutations
 - Multi-message SKE

Constructing SKE schemes

- Basic idea: "stretchable" pseudo-random one-time pads (kept compressed in the key)
 - (Will also need a mechanism to ensure that the same piece of the one-time pad is not used more than once)
- Approach used in practice today: complex functions which are conjectured to have the requisite pseudo-randomness properties (stream-ciphers, block-ciphers)
- Theoretical Constructions: Security relies on certain computational hardness assumptions related to simple functions

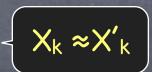
Pseudorandomness Generator (PRG)

- Expand a short random seed to a "random-looking" string
- First, PRG with fixed stretch: $G_k: \{0,1\}^k \rightarrow \{0,1\}^{n(k)}, n(k) > k$
- How does one define random-looking?
 - Next-Bit Unpredictability: PPT adversary can't predict ith bit of a sample from its first (i-1) bits (for every i \in {0,1,...,n-1})
 - A "more correct" definition:
 - PPT adversary can't distinguish between a sample from $\{G_k(x)\}_{x \leftarrow \{0,1\}^k}$ and one from $\{0,1\}^{n(k)}$
 - Turns out they are equivalent!

 $| Pr_{y \leftarrow PRG}[A(y)=0] - Pr_{y \leftarrow rand}[A(y)=0] |$ is negligible for all PPT A

Computational Indistinguishability

Two distribution ensembles $\{X_k\}$ and $\{X'_k\}$ are said to be computationally indistinguishable if



- o ∀ (non-uniform) PPT distinguisher D, ∃ negligible $\nu(k)$ such that $|\Pr_{x \leftarrow x_k}[D(x)=1] \Pr_{x \leftarrow x_k}[D(x)=1]| \le \nu(k)$
- of.: Two distribution ensembles $\{X_k\}$ and $\{X'_k\}$ are said to be statistically indistinguishable if \forall functions T, \exists negligible $\nu(k)$ s.t. $|\Pr_{x \leftarrow X_k}[T(x)=1] \Pr_{x \leftarrow X'_k}[T(x)=1]| \leq \nu(k)$
 - Equivalently, ∃ negligible $\nu(k)$ s.t. $\Delta(X_k, X'_k) \leq \nu(k)$ where $\Delta(X_k, X'_k) := \max_{\top} | Pr_{x \leftarrow X_k}[T(x)=1] Pr_{x \leftarrow X'_k}[T(x)=1] |$

Pseudorandomness Generator (PRG)

- Takes a short seed and (deterministically) outputs a long string
 - $G_k: \{0,1\}^k \rightarrow \{0,1\}^{n(k)} \text{ where } n(k) > k$
- Security definition: Output distribution induced by random input seed should be "pseudorandom"
 - i.e., Computationally indistinguishable from uniformly random
 - $\{G_k(x)\}_{x \leftarrow \{0,1\}^k} \approx U_{n(k)}$
 - Note: $\{G_k(x)\}_{x \leftarrow \{0,1\}^k}$ cannot be statistically indistinguishable from $U_{n(k)}$ unless $n(k) \le k$ (Exercise)
 - i.e., no PRG against unbounded adversaries

Equivalent definitions

| $Pr_{y \leftarrow PRG}[B(y_1^{i-1}) = y_i] - \frac{1}{2}$ | is negligible for all i, all PPT B

| $Pr_{y \leftarrow PRG}[A(y)=0] - Pr_{y \leftarrow rand}[A(y)=0]$ | is negligible for all PPT A

- Next-Bit Unpredictable
 ⇔ Pseudorandom
 - Pseudorandom ⇒ NBU:

For any PPT B, consider PPT A: On input y, output $B(y_1^{i-1}) \oplus y_i$.

 $| Pr_{y \leftarrow PRG}[A(y)=0] - Pr_{y \leftarrow rand}[A(y)=0] | = | Pr_{y \leftarrow PRG}[B(y_1^{i-1}) = y_i] - \frac{1}{2} |$

Equivalent definitions

| $Pr_{y \leftarrow PRG}[B(y_1^{i-1}) = y_i] - \frac{1}{2}$ | is negligible for all i, all PPT B

| $Pr_{y \leftarrow PRG}[A(y)=0] - Pr_{y \leftarrow rand}[A(y)=0] |$ is negligible for all PPT A

- Next-Bit Unpredictable
 ⇔ Pseudorandom
 - NBU ⇒ Pseudorandom: Using a Hybrid Argument
 - Define distributions H_i over n-bit strings: $y \leftarrow PRG$. Output $y_1^i || r$ where r is n-i independent uniform bits. $H_0 = rand$, $H_n = PRG$.
 - NBU ⇒ $H_i \approx H_{i+1}$: Given a PPT distinguisher A, let PPT predictor B be as follows: On input $z \in \{0,1\}^{i-1}$, pick b← $\{0,1\}$, r ← $\{0,1\}^{n-i}$ and output $A(z \parallel b \parallel r) \oplus b$. Then [Exercise]: $|Pr_{y \leftarrow PRG}[B(y_1^{i-1}) = y_i] \frac{1}{2}| = |Pr_{y \leftarrow H_i}[A(y)=0] Pr_{y \leftarrow H_{i+1}}[A(y)=0]|$
 - Then [Exercise]: H_0 ≈ H_n

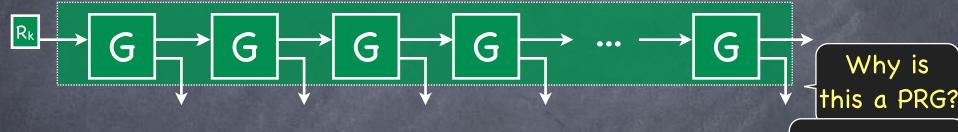
General PRG from 1-Bit Stretch PRG

will build later

• One-bit stretch PRG, G_k : $\{0,1\}^k \rightarrow \{0,1\}^{k+1}$

 $G \longrightarrow G$

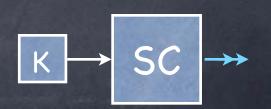
- Increasing the stretch
 - Can use part of the PRG output as a new seed



If intermediate seeds are never output, can keep stretching on demand (for any "polynomial length")

A "hybrid argument"

A stream cipher



One-time CPA-secure SKE with a Stream-Cipher

(stream)

- One-time Encryption with a stream-cipher:
 - Generate a one-time pad from a short seed K
 - Can share just the seed as the key
 - Mask message with the pseudorandom pad
- Decryption is symmetric: plaintext & ciphertext interchanged
- SC can spit out bits on demand, so the message can arrive bit by bit, and the length of the message doesn't have to be a priori fixed
- Security: indistinguishability from using a truly random pad

One-time CPA-secure SKE with a Stream-Cipher

(stream)

- In IDEAL experiment, consider simulator that uses a truly random string as the ciphertext
- To show REAL ≈ IDEAL
- Consider an intermediate world, HYBRID:
 - Like REAL, but Enc/Dec use a (long) truly random pad, instead of the output from the stream-cipher
 - HYBRID = IDEAL (recall perfect security of one-time pad)
 - Claim: REAL ≈ HYBRID
 - Consider the experiments as a system that accepts the pad from outside (R' = SC(K) for a random K, or truly random R) and outputs the environment's output. This system is PPT, and so can't distinguish pseudorandom from random.

One-time CPA-secure SKE with a Stream-Cipher

