
Active Adversary
Lecture 7

CCA Security

MAC

Active Adversary

An active adversary can inject messages into the channel

Eve can send ciphertexts to Bob and get them decrypted

Chosen Ciphertext Attack (CCA)

If Bob decrypts all ciphertexts for Eve, no security
possible

What can Bob do?

SIM-CCA
secure if:

∀

∃ s.t.

∀

Key/
Enc

Key/
Dec

Env

Send Recv

Env
REAL

IDEAL

Replay
Filter

SIM-CCA Security
Symmetric-Key Encryption

REAL ≈ IDEAL

Authentication not required. Adversary allowed
to send own messages (possibly “error”)

Experiment picks b←{0,1} and K←KeyGen

For as long as Adversary wants

Adv sends two messages m0, m1
to the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiments outputs 1 iff b’=b

IND-CCA secure if for all feasible
adversaries Pr[b’=b] ≈ 1/2

b

Key/
Enc

b←{0,1}

b’=b?

m0,m1

mb

b’

Yes/No

Adv gets (guarded) access to DecK oracle
Enc(mb,K)

Key/
Dec

Replay Filter:
No challenge
ciphertext
answered

IND-CCA Security
Symmetric-Key EncryptionIND-CCA +

~correctness

equivalent to

SIM-CCA

CCA Security
How to obtain CCA security?

Use a CPA-secure encryption scheme, but make sure Bob
“accepts” and decrypts only ciphertexts produced by Alice

i.e., Eve can’t create new ciphertexts that will be
accepted by Bob

Achieves the stronger guarantee: in IDEAL, Eve can’t send
its own messages to Bob

CCA secure SKE reduces to the problem of CPA secure SKE
and (shared key) message authentication

Symmetric-key solution for message authentication:  
Message Authentication Code (MAC)

Message Authentication
Codes

A single short key shared by Alice and Bob

Can sign any (polynomial) number of
messages

A triple (KeyGen, MAC, Verify)

Correctness: For all K from KeyGen, and all
messages M, VerifyK(M,MACK(M))=1

Security: probability that an adversary can
produce (M,s) s.t. VerifyK(M,s)=1 is negligible
unless Alice produced an output s=MACK(M)

Mi

si =

MACK(Mi)

(M,s)

VerK(M,s)

Advantage

 = Pr[VerK(M,s)=1 and

 (M,s) ∉ {(Mi,si)}]

MACK VerK

CCA Secure SKE

CCA-EncK1,K2(m) = (c:= CPA-EncK1(m), t:= MACK2(c))

CPA secure encryption: Block-cipher/CTR mode construction

MAC: from a PRF or Block-Cipher (coming up)

SKE can be entirely based on Block-Ciphers

A tool that can make things faster: Hash functions (later)

Or, in principle, from any One-Way Function

Making a MAC

To sign a single n bit message

A simple (but inefficient) scheme

Shared secret key: 2n random 

strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

Negligible probability that Eve can produce 
a signature on m’≠m

Doesn’t require any computational restrictions on adversary!

Has a statistical security parameter k  
(unlike one-time pad which has perfect security)

More efficient one-time MACs exist (later)

r10 r20 r30

r11 r21 r31

One-time MAC

r10 r21 r30

010

MAC Ver

(Multi-msg) MAC from PRF

PRF is a MAC!

MACK(M) := FK(M) where F is a PRF

VerK(M,S) := 1 iff S=FK(M)

Output length of FK should be big enough

If an adversary forges MAC with probability εMAC,
then can break PRF with advantage O(εMAC — 2-m(k))
(m(k) being the output length of the PRF) [How?]

If random function R used as MAC, then
probability of forgery, εMAC* = 2-m(k)

When Each Message is a Single Block

FK

M FK(M)

Recall: Advantage in
breaking a PRF F =
diff in prob test has
of outputting 1, when

given F vs. truly
random R

MAC for
Multiple-Block Messages

What if message is longer than one block?

MAC’ing each block separately is not secure (unlike in the case
of CPA secure encryption)

Eve can rearrange the blocks/drop some blocks

Coming up: two solutions

1. A simple but inefficient scheme from MAC for single-block
messages

2. From a PRF (block cipher), build a PRF that takes longer
inputs

MAC for
Multiple-Block Messages
A simple solution: “tie the blocks together”

Add to each block a random string r (same r for all blocks),
total number of blocks, and a sequence number

Bi = (r, t, i, Mi)

MAC(M) = (r, (MAC(Bi))i=1..t)

r prevents mixing blocks from two messages, t prevents
dropping blocks and i prevents rearranging

Inefficient! Tag length increases with message length

CBC-MAC
PRF domain extension: Chaining the blocks

cf. CBC mode for encryption (which is not a MAC!)

t-block messages, a single block tag

Can be shown to be secure

If restricted to t-block messages (i.e., same length)

Else attacks possible (by extending a previously signed
message)

Security crucially relies on not revealing intermediate
output blocks

m1 m2 mt

FK FK FK

⊕ ⊕

T

...

Patching CBC-MAC
Patching CBC MAC to handle message of any (polynomial) length
but still producing a single block tag (secure if block-cipher is):

Derive K as FK’(t), where t is the number of blocks

Use first block to specify number of blocks

Important that first block is used: if last block, message
extension attacks still possible

EMAC: Output not the last tag T, but FK’(T), where K’ is an
independent key (after padding the message to an integral
number of blocks). No need to know message length a priori.

CMAC: XOR last message block with a key (derived from the
original key using the block-cipher). Also avoids padding when
message is integral number of blocks.

Later: Hash-based HMAC used in TLS and IPSec

NIST Recommendation. 2005

IETF Standard. 1997

