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Active Adversary

An active adversary can inject messages into the channel


Eve can send ciphertexts to Bob and get them decrypted


Chosen Ciphertext Attack (CCA)


If Bob decrypts all ciphertexts for Eve, no security 
possible


What can Bob do?
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REAL ≈ IDEAL

Authentication not required. Adversary allowed 
to send own messages (possibly “error”)



Experiment picks b←{0,1} and K←KeyGen


For as long as Adversary wants


Adv sends two messages m0, m1      
to the experiment


Expt returns Enc(mb,K) to the 
adversary


Adversary returns a guess b’


Experiments outputs 1 iff b’=b


IND-CCA secure if for all feasible 
adversaries  Pr[b’=b] ≈ 1/2
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CCA Security
How to obtain CCA security?


Use a CPA-secure encryption scheme, but make sure Bob 
“accepts” and decrypts only ciphertexts produced by Alice


i.e., Eve can’t create new ciphertexts that will be 
accepted by Bob


Achieves the stronger guarantee: in IDEAL, Eve can’t send 
its own messages to Bob


CCA secure SKE reduces to the problem of CPA secure SKE 
and (shared key) message authentication


Symmetric-key solution for message authentication:  
Message Authentication Code (MAC) 



Message Authentication 
Codes

A single short key shared by Alice and Bob


Can sign any (polynomial) number of 
messages


A triple (KeyGen, MAC, Verify)


Correctness: For all K from KeyGen, and all 
messages M, VerifyK(M,MACK(M))=1


Security: probability that an adversary can 
produce (M,s) s.t. VerifyK(M,s)=1 is negligible 
unless Alice produced an output s=MACK(M) 

Mi

si = 

MACK(Mi)

(M,s)

VerK(M,s)

Advantage 

  = Pr[ VerK(M,s)=1 and 

        (M,s) ∉ {(Mi,si)} ]

MACK VerK



CCA Secure SKE

CCA-EncK1,K2(m) = ( c:= CPA-EncK1(m), t:= MACK2(c) )


CPA secure encryption: Block-cipher/CTR mode construction


MAC: from a PRF or Block-Cipher (coming up)


SKE can be entirely based on Block-Ciphers


A tool that can make things faster: Hash functions (later)


Or, in principle, from any One-Way Function



Making a MAC



To sign a single n bit message


A simple (but inefficient) scheme


Shared secret key: 2n random 

strings (each k-bit long) (ri0,ri1)i=1..n


Signature for m1...mn be (rimi)i=1..n


Negligible probability that Eve can produce 
a signature on m’≠m


Doesn’t require any computational restrictions on adversary!


Has a statistical security parameter k  
(unlike one-time pad which has perfect security)


More efficient one-time MACs exist (later)
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(Multi-msg) MAC from PRF

PRF is a MAC!


MACK(M) := FK(M) where F is a PRF


VerK(M,S) := 1 iff S=FK(M)


Output length of FK should be big enough


If an adversary forges MAC with probability εMAC, 
then can break PRF with advantage O(εMAC — 2-m(k))
(m(k) being the output length of the PRF) [How?]


If random function R used as MAC, then 
probability of forgery, εMAC* = 2-m(k)

When Each Message is a Single Block

FK

M FK(M)

Recall: Advantage in 
breaking a PRF F = 
diff in prob test has 
of outputting 1, when 

given F vs. truly 
random R



MAC for           
Multiple-Block Messages

What if message is longer than one block?


MAC’ing each block separately is not secure (unlike in the case 
of CPA secure encryption)


Eve can rearrange the blocks/drop some blocks


Coming up: two solutions


1. A simple but inefficient scheme from MAC for single-block 
messages


2. From a PRF (block cipher), build a PRF that takes longer 
inputs



MAC for           
Multiple-Block Messages
A simple solution: “tie the blocks together”


Add to each block a random string r (same r for all blocks), 
total number of blocks, and a sequence number


Bi = (r, t, i, Mi)


MAC(M) = (r, (MAC(Bi))i=1..t)


r prevents mixing blocks from two messages, t prevents 
dropping blocks and i prevents rearranging


Inefficient! Tag length increases with message length



CBC-MAC
PRF domain extension: Chaining the blocks


cf. CBC mode for encryption (which is not a MAC!)


t-block messages, a single block tag


Can be shown to be secure


If restricted to t-block messages (i.e., same length)


Else attacks possible (by extending a previously signed 
message)


Security crucially relies on not revealing intermediate 
output blocks

m1 m2 mt
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Patching CBC-MAC
Patching CBC MAC to handle message of any (polynomial) length 
but still producing a single block tag (secure if block-cipher is):


Derive K as FK’(t), where t is the number of blocks


Use first block to specify number of blocks


Important that first block is used: if last block, message 
extension attacks still possible


EMAC: Output not the last tag T, but FK’(T), where K’ is an 
independent key (after padding the message to an integral 
number of blocks). No need to know message length a priori.


CMAC: XOR last message block with a key (derived from the 
original key using the block-cipher). Also avoids padding when 
message is integral number of blocks.


Later: Hash-based HMAC used in TLS and IPSec

NIST Recommendation. 2005

IETF Standard. 1997


