
Public-Key Cryptography
Lecture 9

Public-Key Encryption

Diffie-Hellman Key-Exchange

PKE scheme
SKE:

Syntax

KeyGen outputs
K ← K

Enc: M ×K ×R →C

Dec: C ×K → M

Correctness

∀K ∈ Range(KeyGen),
Dec(Enc(m,K), K) = m

Security (SIM/IND-CPA)

PKE

Syntax

KeyGen outputs
(PK,SK) ← PK ×SK

Enc: M ×PK ×R →C

Dec: C ×SK → M

Correctness

∀(PK,SK) ∈ Range(KeyGen),
Dec(Enc(m,PK), SK) = m

Security (SIM/IND-CPA,  
PKE version)

Shared/Symmetric-Key
Encryption  

(a.k.a. private-key
encryption)

a.k.a. asymmetric-key encryption

SIM-CPA (PKE Version)

Secure (and
correct) if:

∀

∃ s.t.

∀

output of is
distributed
indistinguishably in
REAL and IDEAL

Enc PK

SK
Dec

Env

Send Recv

Env
REAL

IDEAL

m m

m

m m

PK

PK

b

IND-CPA (SKE version)
Experiment picks a random bit b. It also
runs KeyGen to get a key K

For as long as Adversary wants

Adv sends two messages m0, m1
to the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiment outputs 1 iff b’=b

IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 ≤ ν(k)

Key/
Enc

b←{0,1}

b’=b?

m0,m1

mb

Enc(mb,K)

b’

Yes/No

X

Can g
ive A

dv

(direc
t) ora

cle ac
cess

to

Alice [
Why?]

Then no need
for multiple
challenges!  

 [Via hybrids]

IND-CPA (SKE version)
Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv
given PK

Adv sends two messages m0, m1 to
the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiment outputs 1 iff b’=b

IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 ≤ ν(k)

PK

Enc

b←{0,1}

b’=b?

m0,m1

mb

Enc(mb,K)

b’

Yes/No

PKE

X

Adv is
given

PK, s
o no

need
for o

racle

acces
s

PK

IND-CPA (PKE version)
Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv
given PK

Adv sends two messages m0, m1 to
the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiment outputs 1 iff b’=b

IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 ≤ ν(k)

PK

Enc

b←{0,1}

m0,m1

mb

Enc(mb,PK)

b’

Yes/No

PK

b’=b?

IND-CPA +
~correctness

equivalent to

SIM-CPA

Perfect Secrecy?

No perfectly secret and correct PKE (even for one-time encryption)

Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

Intuition: If Eve thinks Bob could decrypt it as two messages
based on different SKs, Alice should be concerned too

i.e., Alice conveys same information to Bob and Eve

[Exercise]

PKE only with computational security

Unless assumptions of
imperfect

eavesdropping

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Random x
X

Random y
Y

X=gx

Output Yx Output Xy

Y=gy

gx, gy

gxy ??

Why DH-Key-exchange
could be secure

Given gx, gy for random x, y, gxy should be “hidden”

i.e., could still be used as a pseudorandom element

i.e., (gx, gy, gxy) ≈ (gx, gy, R)

Is that reasonable to expect?

Depends on the “group”

A set G (for us finite, unless otherwise specified) and a “group
operation” ＊ that is associative, has an identity, is invertible, and
(for us) commutative

Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)

Order of a group G: |G| = number of elements in G

For any a∈G, a|G| = a＊a＊...＊a (|G| times) = identity

Finite Cyclic group (in multiplicative notation): there  
is one element g such that G = {g0, g1, g2, ... g|G|-1}

Prototype: ZN (additive group), with g=1

or any g s.t. gcd(g,N) = 1

Groups, by examples

g0

g2

g3

g1

gN-2
gN-1

. .
.
...

ZN* = (generators of ZN, multiplication mod N)

Numbers in {1,..,N-1} which have a multiplicative inverse mod N

If N is prime, ZN* is a cyclic group, of order N-1

e.g. Z5* = {1,2,3,4} is generated by 2 (as 1,2,4,3), and 

by 3 (as 1,3,4,2). But 1 and 4 are not generators.

(Also cyclic for certain other values of N)

g0

g2

g3

g1

gN-2
gN-1

.

.

.

..
.

Groups, by examples

Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = gx (x ∈ {0,1,...,|G|-1})

In a (computationally efficient) group, given integer x and the
standard representation of a group element g, can efficiently find
the standard representation of X=gx (How?)

But given X and g, may not be easy to find x (depending on G)

DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)←GroupGen; X←G; Adv(G,g,X)→z; gz=X?

If DLA broken, then Diffie-Hellman key-exchange broken

Eve gets x, y from gx, gy (sometimes) and can compute gxy herself

A “key-recovery” attack

Note: could potentially break pseudorandomness without breaking
DLA too

Discrete Log Assumption Repeated
squaring

OWF collection:
Raise(x;G,g)  
 = (gx;G,g)

Decisional Diffie-Hellman
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|] ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]

At least as strong as DLA

If DDH assumption holds, then DLA holds [Why?]

But possible that DLA holds and DDH assumption doesn’t

e.g.: DLA is widely assumed to hold in Zp* (p prime), but

DDH assumption doesn’t hold there!

Next time

