
Public-Key Cryptography
Lecture 9


Public-Key Encryption

Diffie-Hellman Key-Exchange



PKE scheme
SKE:


Syntax


KeyGen outputs      
K ← K


Enc: M ×K ×R →C


Dec: C ×K → M  

Correctness


∀K ∈ Range(KeyGen), 
Dec( Enc(m,K), K) = m


Security (SIM/IND-CPA)

PKE


Syntax


KeyGen outputs            
(PK,SK) ← PK ×SK


Enc: M ×PK ×R →C


Dec: C ×SK → M  

Correctness


∀(PK,SK) ∈ Range(KeyGen), 
Dec( Enc(m,PK), SK) = m


Security (SIM/IND-CPA,  
PKE version)

Shared/Symmetric-Key 
Encryption  

(a.k.a. private-key 
encryption)

a.k.a. asymmetric-key encryption



SIM-CPA (PKE Version)
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IND-CPA (SKE version)
Experiment picks a random bit b. It also 
runs KeyGen to get a key K


For as long as Adversary wants


Adv sends two messages m0, m1  
to the experiment


Expt returns Enc(mb,K) to the 
adversary


Adversary returns a guess b’


Experiment outputs 1 iff b’=b


IND-CPA secure if for all PPT 
adversaries  Pr[b’=b] - 1/2 ≤ ν(k)
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Then no need 
for multiple 
challenges!  

 [Via hybrids]



IND-CPA (SKE version)
Experiment picks a random bit b. It also 
runs KeyGen to get a key (PK,SK). Adv 
given PK


Adv sends two messages m0, m1 to 
the experiment


Expt returns Enc(mb,K) to the 
adversary


Adversary returns a guess b’


Experiment outputs 1 iff b’=b


IND-CPA secure if for all PPT 
adversaries  Pr[b’=b] - 1/2 ≤ ν(k)
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IND-CPA (PKE version)
Experiment picks a random bit b. It also 
runs KeyGen to get a key (PK,SK). Adv 
given PK


Adv sends two messages m0, m1 to 
the experiment


Expt returns Enc(mb,K) to the 
adversary


Adversary returns a guess b’


Experiment outputs 1 iff b’=b


IND-CPA secure if for all PPT 
adversaries  Pr[b’=b] - 1/2 ≤ ν(k)

PK
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b←{0,1}
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IND-CPA + 
~correctness 

equivalent to 

SIM-CPA



Perfect Secrecy?

No perfectly secret and correct PKE (even for one-time encryption)


Public-key and ciphertext (the total shared information between 
Alice and Bob at the end) should together have entire 
information about the message


Intuition: If Eve thinks Bob could decrypt it as two messages 
based on different SKs, Alice should be concerned too


i.e., Alice conveys same information to Bob and Eve


[Exercise]


PKE only with computational security

Unless assumptions of 
imperfect 

eavesdropping



Diffie-Hellman        
Key-exchange

A candidate for how Alice and Bob could generate a 
shared key, which is “hidden” from Eve

Random x
X

Random y
Y

X=gx

Output Yx Output Xy

Y=gy

gx, gy

gxy ??



Why DH-Key-exchange 
could be secure

Given gx, gy for random x, y, gxy should be “hidden”


i.e., could still be used as a pseudorandom element


i.e., (gx, gy, gxy) ≈ (gx, gy, R)


Is that reasonable to expect?


Depends on the “group”



A set G (for us finite, unless otherwise specified) and a “group 
operation” ＊ that is associative, has an identity, is invertible, and 
(for us) commutative 


Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)


Order of a group G: |G| = number of elements in G


For any a∈G,  a|G| = a＊a＊...＊a (|G| times) = identity


Finite Cyclic group (in multiplicative notation): there  
is one element g such that G = {g0, g1, g2, ... g|G|-1}


Prototype: ZN (additive group), with g=1


or any g s.t. gcd(g,N) = 1

Groups, by examples
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ZN* =  (generators of ZN, multiplication mod N)


Numbers in {1,..,N-1} which have a multiplicative inverse mod N


If N is prime, ZN*  is a cyclic group, of order N-1


e.g. Z5* = {1,2,3,4} is generated by 2 (as 1,2,4,3), and 

by 3 (as 1,3,4,2). But 1 and 4 are not generators.


(Also cyclic for certain other values of N)
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Groups, by examples



Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated 
by g: DLg(X) := unique x such that X = gx  (x ∈ {0,1,...,|G|-1})


In a (computationally efficient) group, given integer x and the 
standard representation of a group element g, can efficiently find 
the standard representation of X=gx (How?)


But given X and g, may not be easy to find x (depending on G)


DLA: Every PPT Adv has negligible success probability in the    
DL Expt: (G,g)←GroupGen; X←G; Adv(G,g,X)→z; gz=X?


If DLA broken, then Diffie-Hellman key-exchange broken


Eve gets x, y from gx, gy (sometimes) and can compute gxy herself


A “key-recovery” attack


Note: could potentially break pseudorandomness without breaking 
DLA too

Discrete Log Assumption Repeated 
squaring

OWF collection: 
Raise(x;G,g)  
 = (gx;G,g)



Decisional Diffie-Hellman 
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|]  ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]


At least as strong as DLA


If DDH assumption holds, then DLA holds [Why?]


But possible that DLA holds and DDH assumption doesn’t


e.g.: DLA is widely assumed to hold in Zp* (p prime), but 

DDH assumption doesn’t hold there!


Next time


