Public-Key Cryptography

Lecture 10 DDH Assumption El Gamal Encryption Public-Key Encryption from Trapdoor OWP

Diffie-Hellman Key-exchange

• "Secure" if $(g^{x},g^{y},g^{xy}) \approx (g^{x},g^{y},g^{r})$

Discrete Log Assumption Repeated squaring

- Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by g: DL_g(X) := unique x such that X = g[×] (x ∈ {0,1,...,|G|-1})
- In a (computationally efficient) group, given integer x and the standard representation of a group element g, can efficiently find the standard representation of X=g[×] (How?)
 - But given X and g, may not be easy to find x (depending on G)
 - OLA: Every PPT Adv has negligible success probability in the <u>DL Expt</u>: (G,g)←GroupGen; X←G; Adv(G,g,X)→z; g^z=X? <u>OWF collection</u>:
- If DLA broken, then Diffie-Hellman key-exchange broken
 Raise(x;G,g) = (g^x;G,g)
 Eve gets x, y from g^x, g^y (sometimes) and can compute g^{xy} herself
 A "key-recovery" attack
 - Note: could potentially break pseudorandomness without breaking
 DLA too

Decisional Diffie-Hellman (DDH) Assumption

At least as strong as Discrete Log Assumption (DLA) • DLA: Raise(x; G,g) = $(g^{x}; G,g)$ is a OWF collection If DDH assumption holds, then DLA holds [Why?] But possible that DLA holds and DDH assumption doesn't a e.g.: DLA is widely assumed to hold in \mathbb{Z}_{p}^{*} (p prime), but DDH assumption doesn't hold there!

Do we have a candidate group for DDH?

A Candidate DDH Group

• Consider $\mathbb{Q}\mathbb{R}_{P}^{*}$: subgroup of Quadratic Residues ("even power" elements) of \mathbb{Z}_{P}^{*}

 Easy to check if an element is a QR or not: check if raising to |G|/2 gives 1 (identity element)

ODH does not hold in \mathbb{Z}_P^* : g^{×y} is a QR w/ prob. 3/4;
 g^z is QR only w/ prob. 1/2.
 DDH Ca

How about in QRp*?

• Could check if cubic residue in $\mathbb{Z}_{P}^{*!}$

DDH Candidate: QRP* where P is a random k-bit safe-prime

6

10

But if (P-1) is not divisible by 3, all elements in Z_P* are cubic residues! (P-1)/2 called a Sophie Germain prime
 Safe" if (P-1)/2 is also prime: P called a safe-prime

El Gamal Encryption

Based on DH key-exchange

 Alice, Bob generate a key using DH key-exchange

Then use it as a one-time pad

 Bob's "message" in the keyexchange is his PK

 Alice's message in the keyexchange and the ciphertext of the one-time pad together form a single ciphertext KeyGen: PK=(G,g,Y), SK=(G,g,y)Enc_(G,g,Y)(M) = (X=g^x, C=MY^x) Dec_(G,g,Y)(X,C) = CX^{-y}

X

Random y

Y=q^y

K=X^y

M=CK⁻¹

- KeyGen uses GroupGen to get (G,g)
- x, y uniform from $\mathbb{Z}_{|G|}$

Random x

X=g×

K=Y×

C=MK

 Message encoded into group element, and decoded

Security of El Gamal

 El Gamal IND-CPA secure if DDH holds (for the collection of groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; g^x,g^y,g^z) (where (G,g) ← GroupGen, x,y random and z=xy or random) plays the IND-CPA experiment with A:

But sets $PK=(G,g,g^{\gamma})$ and $Enc(M_b)=(g^{\chi},M_bg^{\chi})$

Outputs 1 if experiment outputs 1 (i.e. if b=b')

• When z=random, A^{*} outputs 1 with probability = 1/2

When z=xy, exactly IND-CPA experiment: A* outputs 1 with probability = 1/2 + advantage of A.

Abstracting El Gamal

Trapdoor PRG:

- KeyGen: a pair (PK,SK)
- Three functions: G_{PK}(.) (a PRG) and T_{PK}(.) (make trapdoor info) and R_{SK}(.) (opening the trapdoor)
 - G_{PK}(x) is pseudorandom even
 given T_{PK}(x) and PK
 - (РК,Т_{РК}(х),G_{РК}(х)) ≈ (РК,Т_{РК}(х),r)
 Т_{РК}(х) hides G_{РК}(х). SK opens it.
 R_{SK}(Т_{РК}(х)) = G_{РК}(х)
- Enough for an IND-CPA secure PKE scheme (e.g., Security of El Gamal)

KeyGen: PK=(G,g,Y), SK=(G,g,Y) Enc_(G,g,Y)(M) = (X=g^x, C=MY^x) Dec_(G,g,Y)(X,C) = CX^{-y} KeyGen: (PK,SK) Enc_{PK}(M) = (X=T_{PK}(x), C=M.G_{PK}(x)) Dec_{SK}(X,C) = $C/R_{SK}(T_{PK}(x))$

Trapdoor PRG from Generic Assumption?

PRG constructed from OWP (or OWF)

- Allows us to instantiate the construction with several candidates
- Is there a similar construction for TPRG from OWP?
 - Trapdoor property seems fundamentally different: generic
 OWP does not suffice
 - Will start with "Trapdoor OWP"

 $(PK,T_{PK}(x),G_{PK}(x)) \approx (PK,T_{PK}(x),r)$

Trapdoor OWP

(KeyGen,f,f') (all PPT) is a trapdoor one-way permutation if
For all (PK,SK) ← KeyGen
f_{PK} a permutation
f'_{SK} is the inverse of f_{PK}
For all PPT adversary, probability of success in the Trapdoor OWP experiment is negligible

(PK,SK)←KeyGen X←{0,1}^k X′ = X?

JYes/No

f_{PK}(x),PK

Trapdoor OWP

(KeyGen,f,f') (all PPT) is a trapdoor one-way permutation if
For all (PK,SK) ← KeyGen
f_{PK} a permutation
f'_{SK} is the inverse of f_{PK}
For all PPT adversary, probability of success in the Trapdoor OWP experiment is negligible

- Hardcore predicate:
 - B_{PK} s.t. (PK, f_{PK}(x), B_{PK}(x)) ≈ (PK, f_{PK}(x), r)

(PK,SK)←KeyGen x←{0,1}^k b' = B_{PK}(x)?

∫Yes/No

b'

f_{PK}(x),PK

Trapdoor PRG from Trapdoor OWP

Same construction as PRG from OWP
One bit Trapdoor PRG

KeyGen same as Trapdoor OWP's
 KeyGen

 GPK(X) := BPK(X). TPK(X) := fPK(X). RSK(Y) := GPK(f'SK(Y))
 (SK assumed to contain PK)
 More generally, last permutation output serves as TPK

 $(PK,T_{PK}(x),G_{PK}(x)) \approx (PK,T_{PK}(x),r)$ $(PK,f_{PK}(x),B_{PK}(x)) \approx (PK,f_{PK}(x),r)$

Candidate Trapdoor OWPs

- From some (candidate) OWP collections, with index as public-key Recall candidate OWF collections
 - Rabin OWF: $f_{Rabin}(x; N) = x^2 \mod N$, where N = PQ, and P, Q are k-bit primes (and x uniform from {0...N-1})
 - Fact: f_{Rabin}(.; N) is a permutation among quadratic residues, when P, Q are = $3 \pmod{4}$
 - Fact: Can invert f_{Rabin}(.; N) given factorization of N

RSA function: f_{RSA}(x; N,e) = x^e mod N where N=PQ, P,Q k-bit primes, e s.t. $gcd(e,\varphi(N)) = 1$ (and x uniform from $\{0...N-1\}$) coming up

Fact: f_{RSA}(.; N,e) is a permutation

Fact: While picking (N,e), can also pick d s.t. x^{ed} = x