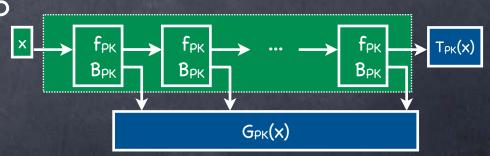
Public-Key Cryptography

Lecture 11
Some Trapdoor OWP Candidates
Chinese Remainder Theorem

CECALL

CPA-secure PKE for Trapdoor OWP

- CPA secure PKE from Trapdoor PRG
 - PRG family with a (PK,SK). PK specifies the family member.
 - Can encapsulate the seed for the PRG such that:
 - PRG output remains pseudorandom even given PK and encapsulated seed
 - Can recover PRG output from encapsulated seed and SK
 - El Gamal: encapsulated seed = gx, PRG output = Yx
- Trapdoor PRG from Trapdoor OWP



Candidate Trapdoor OWPs

- Two candidates using composite moduli
 - **RSA function**: $f_{RSA}(x; N,e) = x^e \mod N$ where N=PQ, P,Q k-bit primes, e s.t. gcd(e, φ(N)) = 1 (and x uniform from $\{0...N-1\}$)
 - Fact: f_{RSA}(.; N,e) is a permutation
 - Fact: While picking (N,e), can also pick d s.t. xed = x
 - Rabin OWF: f_{Rabin}(x; N) = x² mod N, where N = PQ, and P, Q are k-bit primes (and x uniform from {0...N-1})
 - Fact: f_{Rabin}(.; N) is a permutation among quadratic residues, when P, Q are = 3 (mod 4)
 - Fact: Can invert f_{Rabin}(.; N) given factorization of N

ZN*

- Group operation: "multiplication modulo N"
 - Has identity, is associative
- Group elements: all numbers (mod N) which have a multiplicative inverse modulo N
 - e.g.: \mathbb{Z}_6^* has elements $\{1,5\}$, \mathbb{Z}_7^* has $\{1,2,3,4,5,6\}$
- a has a multiplicative inverse modulo N
 - $\Leftrightarrow \exists \text{ integers b, c s.t. ab = 1+cN}$
 - - $(\Rightarrow) \operatorname{gcd}(a,N) \mid (ab-cN)$

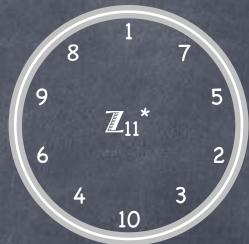
- Extended

 Euclidean algorithm to find (b,d)

 given (a,N). Used to efficiently invert

 elements in \mathbb{Z}_N^*
- (←) from Euclid's algorithm: ∃ b, d s.t. gcd(a,N) = ab+dN

Zp*, P prime



- Recall Z_P*
- ullet Cyclic: Isomorphic to \mathbb{Z}_{P-1}
- Discrete Log assumed to be hard
- Quadratic Residues form a subgroup QRP*
 - Candidate group for DDH assumption

Z_N*, N=PQ, two primes

- e.g. $\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$
 - ϕ $\phi(15) = 8$

Also works with P, Q co-primes

- Group operation and inverse efficiently computable
- Oyclic?
 - No! In \mathbb{Z}_{15}^* , $2^4 = 4^2 = 7^4 = 8^4 = 11^2 = 13^4 = 14^2 = 1$ (i.e., each generates at most 4 elements, out of 8)
- \circ "Product of two cycles": \mathbb{Z}_3^* and \mathbb{Z}_5^*
 - Chinese Remainder Theorem

Chinese Remainder Theorem

- ${\color{red} \circ}$ Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5
 - $a \mapsto (a \mod 3, a \mod 5)$
- CRT says that the pair (a mod 3, a mod 5) uniquely determines a (mod 15)!
 - All 15 possible pairs occur, once each
- In general for N=PQ (P, Q relatively prime), a → (a mod P, a mod Q) maps the N elements to the N distinct pairs
 - In fact extends to product of more than two (relatively prime) numbers

Z ₁₅	Z 3	1 5
0	0	0
1	1	1
2	2	2
3	0	3
4 5	1	4
	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

Chinese Remainder Theorem and \mathbb{Z}_{N}

- $_{\text{O}}$ CRT representation of \mathbb{Z}_{N} : every element of \mathbb{Z}_{N} can be written as a unique element of $\mathbb{Z}_{\text{P}}\times\mathbb{Z}_{\text{Q}}$
 - Addition can be done coordinate-wise
 - (a,b) + (mod N) (a',b') = (a + (mod P) a',b + (mod Q) b')

Z ₁₅	Z ₃	1 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

Chinese Remainder Theorem

and \mathbb{Z}_N^*

- \circ Elements in \mathbb{Z}_N^*
 - Multiplication (and identity, and inverse)
 also coordinate-wise
 - No multiplicative inverse iff (0,b) or (a,0)
 - Else in \mathbb{Z}_N^* : i.e., (a,b) s.t. $a \in \mathbb{Z}_P^*$, $b \in \mathbb{Z}_Q^*$

$$a Z_N^* \cong Z_P^* \times Z_Q^*$$

- $\varphi(N) = | \mathbb{Z}_N^* | = (P-1)(Q-1) (P \neq Q, primes)$
- Can efficiently compute the isomorphism (in both directions) if P, Q known [Exercise]

Z ₁₅	Z 3	Z 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	2 3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

RSA Function

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\varphi(N)) = 1$ (i.e., $e \in \mathbb{Z}_{\varphi(N)}^*$)
 - $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - a Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- $f_{RSA[N,e]}$ is a permutation over \mathbb{Z}_N with a trapdoor (namely (N,d))
 - In fact, there exists d s.t. f_{RSA[N,d]} is the inverse of f_{RSA[N,e]}
 - \circ d s.t. ed \equiv 1 (mod $\varphi(N)$) \Rightarrow \times^{ed} \equiv \times (mod N)
 - Why? By CRT!
 - Exponentiation works coordinate-wise
 - ed=1 (mod ϕ (N)) ⇒ ed=1 (mod ϕ (P)) and ed=1 (mod ϕ (Q))

RSA Function

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\varphi(N)) = 1$ (i.e., $e \in \mathbb{Z}_{\varphi(N)}^*$)
 - $f_{RSA[N,e]}: \mathbb{Z}_N \to \mathbb{Z}_N$
 - Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- $f_{RSA[N,e]}$ is a permutation over \mathbb{Z}_N with a trapdoor (namely (N,d))
- **RSA Assumption:** $f_{RSA[N,e]}$ is a OWF collection, when P, Q random k-bit primes and e < N random number s.t. $gcd(e,\phi(N))=1$ (with inputs uniformly from \mathbb{Z}_N or \mathbb{Z}_N^*)
 - Alternate version: e=3, P, Q restricted so that $gcd(3,\phi(N))=1$
- RSA Assumption will be false if one can factorize N
 - Then knows $\varphi(N) = (P-1)(Q-1)$ and can find d s.t. ed = 1 (mod $\varphi(N)$)
 - Converse not known to hold
- Trapdoor OWP Candidate

Rabin Function

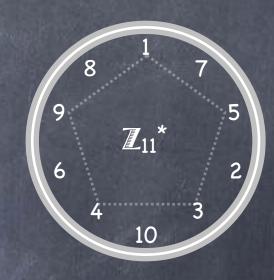
- $f_{Rabin[N]}(x) = x^2 \mod N$ where N=PQ, P,Q primes = 3 mod 4
 - Is a candidate OWF collection (indexed by N)
 - Equivalent to the assumption that f_{mult} is a OWF (for the appropriate distribution)
 - If can factor N, will see how to find square-roots
 - So (P,Q) a trapdoor to "invert"
 - Fact: If can take square-root mod N, can factor N
 - \bullet Coming up: Is a permutation over \mathbb{QR}_N^* , with trapdoor (P,Q)

Square-roots in \mathbb{Z}_{P}^{*}

- What are the square-roots of x²?
- $\sqrt{1} = \pm 1$
 - - \Rightarrow (x+1)=0 or (x-1)=0 (mod P)
 - P is prime
- \Leftrightarrow x=1 (mod P) or x=-1 (mod P)

• More generally $\sqrt{(x^2)} = \pm x$ (because $x^2 = y^2$ (mod P) $\Leftrightarrow x = \pm y$)

$$\circ -x = -1 \cdot x,$$

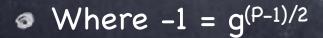


Square-roots in \mathbb{Z}_{P}^{*}

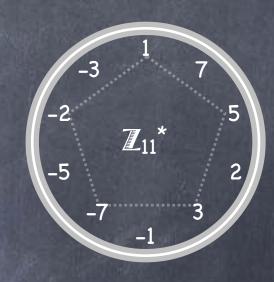
- What are the square-roots of x²?
- $\sqrt{1} = \pm 1$

$$\Rightarrow$$
 (x+1)=0 or (x-1)=0 (mod P)

$$\Leftrightarrow$$
 x=1 (mod P) or x=-1 (mod P)

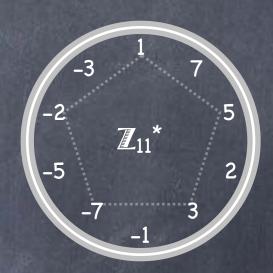


$$\circ -x = -1 \cdot x,$$



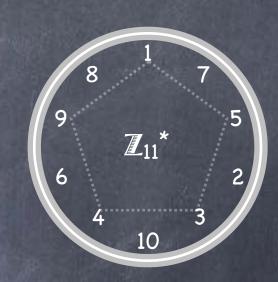
Square-roots in QRP*

- $In <math>\mathbb{Z}_{P}^{*} \sqrt{(x^2)} = \pm x$
- \bullet How many square-roots stay in \mathbb{QR}_{P}^* ?
 - Depends on P!
 - \circ e.g. $\mathbb{QR}_{13}^* = \{\pm 1, \pm 3, \pm 4\}$
 - 1,3,-4 have 2 square-roots each. But -1,-3,4 have none within \mathbb{QR}_{13}^*
 - \bullet Since $-1 \in \mathbb{QR}_{13}^*$, $x \in \mathbb{QR}_{13}^* \Rightarrow -x \in \mathbb{QR}_{13}^*$
 - \bullet -1 $\in \mathbb{QR}_{P}^*$ iff (P-1)/2 even
- If (P-1)/2 odd, exactly one of ±x in QR_P * (for all x)
 - \bullet Then, squaring is a permutation in \mathbb{QR}_P^*



Square-roots in QRP*

- o In $\mathbb{Z}_{P}^{*} \sqrt{(x^{2})} = \pm x$ (i.e., x and $-1 \cdot x$)
- \circ If (P-1)/2 odd, squaring is a permutation in \mathbb{QR}_{P}^*
 - \circ (P-1)/2 odd \Leftrightarrow P = 3 (mod 4)



- But easy to compute both ways!
 - In fact $\sqrt{z} = z^{(P+1)/4} \in \mathbb{QR}_P^*$ (because (P+1)/2 even)
- ${\color{blue} \bullet}$ Rabin function defined in ${\color{blue} \mathbb{QR}_N}^*$ and relies on keeping the factorization of N=PQ hidden

QRN*

- \bullet What do elements in \mathbb{QR}_N^* look like, for N=PQ?
 - **a** By CRT, can write $a \in \mathbb{Z}_N^*$ as $(x,y) \in \mathbb{Z}_P^* \times \mathbb{Z}_Q^*$
 - CRT representation of a^2 is $(x^2, y^2) \in \mathbb{QR}_P^* \times \mathbb{QR}_Q^*$

 - - © Can efficiently do this, if can compute (and invert) the isomorphism from \mathbb{QR}_N^* to $\mathbb{QR}_P^* \times \mathbb{QR}_Q^*$
 - (P,Q) is a trapdoor
 - Without trapdoor, OWF candidate
 - Tollows from assuming OWF in \mathbb{Z}_N^* , because $\mathbb{Q}\mathbb{R}_N^*$ forms $1/4^{th}$ of \mathbb{Z}_N^*

Rabin Function

- $f_{Rabin[N]}(x) = x^2 \mod N$
 - Candidate OWF collection, with N=PQ (P,Q random k-bit primes)
 - - A permutation
 - Has a trapdoor for inverting (namely (P,Q))
- Candidate Trapdoor OWP

Summary

- A DLA candidate: Z_P*
- A DDH candidate: QRp* where P is a safe prime
- Chinese Remainder Theorem
 - o $I_N \cong I_P \times I_Q$

 - $\overline{Q} \mathbb{R}_{N}^{*} \cong \mathbb{Q} \mathbb{R}_{P}^{*} \times \mathbb{Q} \mathbb{R}_{Q}^{*}$
- Trapdoor OWP candidates:
 - $f_{RSA[N,e]} = x^e \mod N$ where N=PQ and $gcd(e, \varphi(N))=1$
 - Trapdoor: $(P,Q) \rightarrow \varphi(N) \rightarrow d=e^{-1}$ in $\mathbb{Z}_{\varphi(N)}^*$
 - $f_{Rabin[N]} = x^2 \mod N$ where N=PQ, where P,Q = 3 (mod 4)
 - Trapdoor: (P,Q)
- Trapdoor OWP can be used to construct Trapdoor PRG
 - Trapdoor PRG can give IND-CPA secure PKE