Some Project Ideas

Read & Write about something

- Constructions not covered in class (e.g., McEliece PKE, lattice-based PKE), concepts not covered (e.g., Key management, Zero-Knowledge, Oblivious Transfer), proofs not covered (e.g., security of TLS),...

Implementation project

Make something

- Slow and secure crypto (e.g., SKE and/or Digital Signatures from OWP, full-domain CRHF from DL,...)
- Higher-level applications (e.g., “simple-TLS”, Off-the-record messaging, things you can do with a block-cipher...)
- A library with a cleaner API for encryption/authentication

Break something

- e.g., use a constraint-solver to break (broken) block-ciphers...
Hash Functions

Lecture 14
Flavours of collision resistance
A Tale of Two Boxes

The bulk of today’s applied cryptography works with two magic boxes

- Block Ciphers
- Hash Functions

Block Ciphers: Best modeled as (strong) Pseudorandom Permutations, with inversion trapdoors

- Often more than needed (e.g. SKE needs only PRF)

Hash Functions:

- Some times modeled as Random Oracles!
 - Schemes relying on this can often be broken

Today: understanding security requirements on hash functions
Hash Functions

“Randomized” mapping of inputs to shorter hash-values

Hash functions are useful in various places

In data-structures: for efficiency

Intuition: hashing removes worst-case effects

In cryptography: for “integrity”

Primary use: Domain extension (compress long inputs, and feed them into boxes that can take only short inputs)

Typical security requirement: “collision resistance”

Also sometimes: some kind of unpredictability
Hash Function Family

- **Hash function** $h: \{0,1\}^{n(k)} \rightarrow \{0,1\}^{t(k)}$
 - **Compresses**
 - **A family**
 - Alternately, takes two inputs, the index of the member of the family, and the real input
 - **Efficient sampling and evaluation**
 - **Idea:** when the hash function is randomly chosen, "behaves randomly"
 - **Main goal:** to "avoid collisions". Will see several variants of the problem

<table>
<thead>
<tr>
<th>x</th>
<th>$h_1(x)$</th>
<th>$h_2(x)$</th>
<th>$h_3(x)$</th>
<th>$h_4(x)$</th>
<th>$h_N(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Hash Functions in Crypto Practice

- A single fixed function
 - e.g. SHA-3, SHA-256, SHA-1, MD5, MD4
 - Not a family ("unkeyed")
 - (And no security parameter knob)

- Not collision-resistant under any of the following definitions

- Alternately, could be considered as having already been randomly chosen from a family (and security parameter fixed too)

- Usually involves hand-picked values (e.g. "I.V." or "round constants") built into the standard
Degrees of Collision-Resistance

If for all PPT A, \(\Pr[\text{x} \neq \text{y} \text{ and } h(\text{x}) = h(\text{y})] \) is negligible in the following experiment:

- \(A \rightarrow (\text{x},\text{y}); \ h \leftarrow \mathcal{U} : \text{Combinatorial Hash Functions (even non-PPT A)} \)
- \(A \rightarrow \text{x}; \ h \leftarrow \mathcal{U}; \ A(h) \rightarrow \text{y} : \text{Universal One-Way Hash Functions} \)
- \(h \leftarrow \mathcal{U}; \ A(h) \rightarrow (\text{x},\text{y}) : \text{Collision-Resistant Hash Functions} \)

Also useful sometimes: A gets only oracle access to \(h(.) \) (weak). Or, A gets any coins used for sampling \(h \) (strong).

CRHF the strongest; UOWHF still powerful (will be enough for digital signatures).
Degrees of Collision-Resistance

- Variants of CRHF/UOWHF where x is random
 - $h \leftarrow \mathcal{U}; x \leftarrow X; A(h,h(x)) \rightarrow y$ (y=x allowed)
 - Pre-image collision resistance if $h(x)=h(y)$ w.n.p
 - i.e., $f(h,x) := (h,h(x))$ is a OWF (and h compresses)
 - $h \leftarrow \mathcal{U}; x \leftarrow X; A(h,x) \rightarrow y$ (y\neq x)
 - Second Pre-image collision resistance if $h(x)=h(y)$ w.n.p
 - Incomparable (neither implies the other) [Exercise]

CRHF implies second pre-image collision resistance and, if compressing, then pre-image collision resistance [Exercise]
Hash Length

- If range of the hash function is too small, not collision-resistant
- If range poly(k)-size (i.e. hash is logarithmically long), then non-negligible probability that two random x, y provide collision
- In practice interested in minimizing the hash length (for efficiency)
- Generic collision-finding attack: birthday attack
 - Look for a collision in a set of random hashes (needs only oracle access to the hash function)
 - Expected size of the set before collision: $O(\sqrt{|\text{range}|})$
 - Birthday attack effectively halves the hash length (say security parameter) over "naïve attack"
Universal Hashing

Combinatorial HF: \(A \rightarrow (x,y); \ h \leftarrow \mathcal{U}. \ h(x)=h(y) \) w.n.p

Even better: 2-Universal Hash Functions

"Uniform" and "Pairwise-independent"

\[\forall x,z \ \Pr[h \leftarrow \mathcal{U} \ [\ h(x)=z \] = 1/|Z| \] (where \(h:X \rightarrow Z \))

\[\forall x \neq y, w, z \ \Pr[h \leftarrow \mathcal{U} \ [\ h(x)=w, \ h(y)=z \] = 1/|Z|^2 \]

\[\Rightarrow \forall x \neq y \ \Pr[h \leftarrow \mathcal{U} \ [\ h(x)=h(y) \] = 1/|Z| \]

2-Universal:

\[\forall x_1..x_k \ (\text{distinct}), \ z_1..z_k, \ \Pr[h \leftarrow \mathcal{U} \ [\ \forall i \ h(x_i)=z_i \] = 1/|Z|^k \]

Inefficient example: \(\mathcal{U} \) set of all functions from \(X \) to \(Z \)

But we will need all \(h \in \mathcal{U} \) to be succinctly described and efficiently evaluable
Universal Hashing

Combinatorial HF: $A \rightarrow (x,y)$; $h \leftarrow \mathcal{U}$. $h(x) = h(y)$ w.n.p

Even better: 2-Universal Hash Functions

“Uniform” and “Pairwise-independent”

$\forall x, z \ Pr_{h \leftarrow \mathcal{U}} [h(x) = z] = 1/|Z|$ (where $h: X \rightarrow Z$)

$\forall x \neq y, w, z \ Pr_{h \leftarrow \mathcal{U}} [h(x) = w, h(y) = z] = 1/|Z|^2$

\[\Rightarrow \forall x \neq y \ Pr_{h \leftarrow \mathcal{U}} [h(x) = h(y)] = 1/|Z| \]

E.g. $h_{a,b}(x) = ax + b$ (in a finite field, $X = Z$)

$Pr_{a,b} [ax + b = z] = Pr_{a,b} [b = z - ax] = 1/|Z|$

$Pr_{a,b} [ax + b = w, ay + b = z] = \ ?$ Exactly one (a,b) satisfying the two equations (for $x \neq y$)

$Pr_{a,b} [ax + b = w, ay + b = z] = 1/|Z|^2$

But does not compress!
Universal Hashing

- **Combinatorial HF**: $A \rightarrow (x, y)$; $h \leftarrow \mathcal{U}$. $h(x) = h(y)$ w.n.p

- Even better: **2-Universal Hash Functions**
 - “Uniform” and “Pairwise-independent”
 - $\forall x, z$ $\Pr_{h \leftarrow \mathcal{H}} [h(x) = z] = 1/|Z|$ (where $h : X \rightarrow Z$)
 - $\forall x \neq y, w, z$ $\Pr_{h \leftarrow \mathcal{H}} [h(x) = w, h(y) = z] = 1/|Z|^2$
 - $\Rightarrow \forall x \neq y$ $\Pr_{h \leftarrow \mathcal{H}} [h(x) = h(y)] = 1/|Z|

- e.g. $h'(x) = \text{Chop}(h(x))$ where h from a (possibly non-compressing) 2-universal HF

 - Chop a t-to-1 map from Z to Z'
 - e.g. with $|Z| = 2^k$, removing last bit gives a 2-to-1 mapping
 - $\Pr_h [\text{Chop}(h(x)) = w, \text{Chop}(h(y)) = z]$
 $= \Pr_h [h(x) = w0 \text{ or } w1, h(y) = z0 \text{ or } z1] = 4/|Z|^2 = 1/|Z'|^2$