Some Project Ideas

- Read & Write about something
 - Constructions not covered in class (e.g., McEliece PKE, lattice-based PKE), concepts not covered (e.g., Key management, Zero-Knowledge, Oblivious Transfer), proofs not covered (e.g., security of TLS),...
- Implementation project
 - Make something
 - Slow and secure crypto (e.g., SKE and/or Digital Signatures from OWP, full-domain CRHF from DL,...)
 - Higher-level applications (e.g., "simple-TLS", Off-the-record messaging, things you can do with a block-cipher...)
 - A library with a cleaner API for encryption/authentication
 - Break something
 - e.g., use a constraint-solver to break (broken) block-ciphers

Hash Functions

Lecture 14
Flavours of collision resistance

A Tale of Two Boxes

- The bulk of today's applied cryptography works with two magic boxes
 - Block Ciphers
 - Hash Functions
- Block Ciphers: Best modeled as (strong) Pseudorandom Permutations, with inversion trapdoors
 - Often more than needed (e.g. SKE needs only PRF)
- Hash Functions:
 - Some times modeled as Random Oracles!
 - Schemes relying on this can often be broken
 - Today: understanding security requirements on hash functions

Hash Functions

- "Randomized" mapping of inputs to shorter hash-values
- Hash functions are useful in various places
 - In data-structures: for efficiency
 - Intuition: hashing removes worst-case effects
 - In cryptography: for "integrity"
- Primary use: Domain extension (compress long inputs, and feed them into boxes that can take only short inputs)
 - Typical security requirement: "collision resistance"
 - Also sometimes: some kind of unpredictability

Hash Function Family

- Hash function h: $\{0,1\}^{n(k)} \rightarrow \{0,1\}^{t(k)}$
 - Compresses
- A family
 - Alternately, takes two inputs, the index of the member of the family, and the real input
- Efficient sampling and evaluation
- Idea: when the hash function is randomly chosen, "behaves randomly"
 - Main goal: to "avoid collisions".
 Will see several variants of the problem

X	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
000	0	0	0	1
001	0	0	1	1
010	0	1	0	1
011	0	1	1	0
100	1	0	0	1
101	1	0	1	0
110	1	1	0	1
111	1	1	1	0

h_N(x)

Hash Functions in Crypto Practice

- A single fixed function
 - e.g. SHA-3, SHA-256, SHA-1, MD5, MD4
 - Not a family ("unkeyed")
 - (And no security parameter knob)
- Not collision-resistant under any of the following definitions
- Alternately, could be considered as having already been randomly chosen from a family (and security parameter fixed too)
 - Usually involves hand-picked values (e.g. "I.V." or "round constants") built into the standard

Degrees of Collision-Resistance

- If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

 - $h \leftarrow \mathcal{U}$; $A(h) \rightarrow (x,y)$: Collision-Resistant Hash Functions
- Also useful sometimes: A gets only oracle access to h(.) (weak).
 Or, A gets any coins used for sampling h (strong).
- CRHF the strongest; UOWHF still powerful (will be enough for digital signatures)

Degrees of Collision-Resistance

- Variants of CRHF/UOWHF where x is random

A.k.a One-Way Hash Function

- Pre-image collision resistance if h(x)=h(y) w.n.p
- i.e., f(h,x) := (h,h(x)) is a OWF (and h compresses)
- h←뷫; x←X; A(h,x)→y (y≠x)
 - Second Pre-image collision resistance if h(x)=h(y) w.n.p
- Incomparable (neither implies the other) [Exercise]
- CRHF implies second pre-image collision resistance and, if compressing, then pre-image collision resistance [Exercise]

Hash Length

- If range of the hash function is too small, not collision-resistant
 - If range poly(k)-size (i.e. hash is logarithmically long), then non-negligible probability that two random x, y provide collision
- In practice interested in minimizing the hash length (for efficiency)
 - Generic collision-finding attack: birthday attack
 - Look for a collision in a set of random hashes (needs only oracle access to the hash function)
 - Expected size of the set before collision: O(√|range|)
 - Birthday attack effectively halves the hash length (say security parameter) over "naïve attack"

Universal Hashing

- **⊘** Combinatorial HF: $A \rightarrow (x,y)$; $h \leftarrow \#$. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

 - - $\Rightarrow \forall x \neq y \ Pr_{h \leftarrow \mathcal{U}} [h(x) = h(y)] = 1/|Z|$

X	h ₁ (x)	h ₂ (x)	h3(x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

Negligible collision-probability if

super-polynomial-sized range

k-Universal:

- $\forall x_1..x_k$ (distinct), $z_1..z_k$, $Pr_{h \leftarrow \mathcal{U}} [\forall i \ h(x_i) = z_i] = 1/|Z|^k$
- Inefficient example: # set of all functions from X to Z
 - But we will need all h∈
 to be succinctly described and efficiently evaluable

Universal Hashing

- Combinatorial HF: A→(x,y); h←𝓜. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

0	∀x≠y,w,z	Prh←#[h(x)=w	h(y):	=z]	$= 1/ Z ^2$
---	----------	--------	--------	-------	------	-------------

$$\bullet \Rightarrow \forall x \neq y \ Pr_{h \leftarrow \mathscr{U}} [h(x) = h(y)] = 1/|Z|$$

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

Negligible collision-probability if super-polynomial-sized range

•
$$Pr_{a,b} [ax+b=z] = Pr_{a,b} [b=z-ax] = 1/|Z|$$

- $Pr_{a,b}$ [ax+b = w, ay+b = z] = ? Exactly one (a,b) satisfying the two equations (for $x\neq y$)
 - $Pr_{a,b} [ax+b = w, ay+b = z] = 1/|Z|^2$
- But does not compress!

Universal Hashing

- Combinatorial HF: A→(x,y); h← \cancel{U} . h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"
 - $∀x,z Pr_{h \leftarrow M} [h(x)=z] = 1/|Z| (where h:X→Z)$
 - - $\Rightarrow \forall x \neq y \Pr_{h \leftarrow \mathcal{U}} [h(x) = h(y)] = 1/|Z|$

0	e.g. $h'_h(x) = Chop(h(x))$ where h from a	
	(possibly non-compressing) 2-universal HF	

- Chop a t-to-1 map from Z to Z'
- \circ e.g. with $|Z|=2^k$, removing last bit gives a 2-to-1 mapping
 - Pr_h [Chop(h(x)) = w, Chop(h(y)) = z] = Pr_h [h(x) = w0 or w1, h(y) = z0 or z1] = $4/|Z|^2 = 1/|Z'|^2$

X	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

Negligible collision-probability if super-polynomial-sized range