Hash Functions (ctd.)

Lecture 15

Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

 - - $h \leftarrow \mathcal{H}$; $A^h \rightarrow (x,y)$: Weak Collision-Resistant Hash Functions
 - $h \leftarrow \mathcal{H}$; $x \leftarrow X$; $A(h,h(x)) \rightarrow y$: One-Way Hash Functions (x=y OK)
 - $h \leftarrow \mathcal{U}$; $x \leftarrow X$; $A(h,x) \rightarrow y$: SPR Hash Functions
- Also often required: "unpredictability"
- Already saw: a 2-UHF (chop(ax+b) over a field)
- Today: UOWHF and CRHF constructions. Domain Extension.

140 50 N

Generalizes to vector spaces [Exercise]

UOWHF

- Universal One-Way HF: $A \rightarrow x$; $h \leftarrow \mathcal{U}$; $A(h) \rightarrow y$. h(x) = h(y) w.n.p
- Since the hash function is compressing, then there will be collisions. So a computationally unbounded adversary can win this game!
- Need to rely on computational hardness
- UOWHF can be constructed from OWF
- Much easier to see OWP ⇒ UOWHF

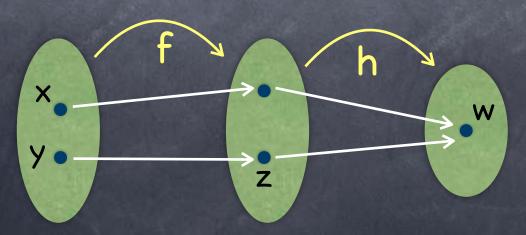
If not unique, uniformly sample a solution for h

UOWHF from OWP

- \circ $F_h(x) = h(f(x))$, where f is a OWP and h from \circ UHF family
 - s.t. h compresses by a bit (i.e., is a 2/to-1 map), and
 - for all z, z', w, can efficiently solve for h s.t. h(z) = h(z') = w
- Is a UOWHF: can choose h to force UOWHF adversary to invert f

BreakOWP(z) { Get $x \leftarrow A$; Sample random w; Solve h s.t. h(z) = h(f(x)) = w; Give h to A; Get $y \leftarrow A$ and output y; }

• Only collision ($y \neq x$ s.t. $F_h(x) = F_h(y)$) is $y=f^{-1}(z)$



If not unique, uniformly sample a solution for h

UOWHF from OWP

- $F_h(x) = h(f(x))$, where f is a OWP and h from g(UHF) family
 - s.t. h compresses by a bit (i.e., is a 2/to-1 map), and
 - for all z, z', w, can efficiently solve for h s.t. h(z) = h(z') = w
- Is a UOWHF: can choose h to force UOWHF adversary to invert f

```
BreakOWP(z) { Get x \leftarrow A; Sample random w; Solve h s.t. h(z) = h(f(x)) = w; Give h to A; Get y \leftarrow A and output y; }
```

- Only collision ($y \neq x$ s.t. $F_h(x) = F_h(y)$) is $y=f^{-1}(z)$
- BreakOWP is efficient as h can be efficiently solved
- BreakOWP has same advantage as A has against UOWHF? Yes, if h is uniform (independent of x) [Why?]
 - h uniform because z, w picked uniformly

CRHF

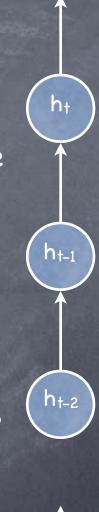
- Collision-Resistant HF: h←#; A(h)→(x,y). h(x)=h(y) w.n.p
- Not known to be possible from OWF/OWP alone
 - "Impossibility" (blackbox-separation) known
- Possible from "claw-free pair of permutations"
 - In turn from hardness of discrete-log, factoring, and from lattice-based assumptions
- Also from "homomorphic one-way permutations", and from homomorphic encryptions
 - All candidates use mathematical operations that are considered computationally expensive

CRHF

- CRHF from discrete log assumption:
 - Suppose \mathbb{G} a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}_p^* for p=2q+1 a safe prime)
 - $h_{g1,g2}(x_1,x_2) = g_1^{x_1}g_2^{x_2}$ (in •) where g_1 , $g_2 \neq 1$ (hence generators)
 - A collision: $(x_1,x_2) \neq (y_1,y_2)$ s.t. $h_{g1,g2}(x_1,x_2) = h_{g1,g2}(y_1,y_2)$
 - Collision $\Rightarrow x_1 \neq y_1 \text{ and } x_2 \neq y_2 \text{ [Why?]}$
 - Then $g_2 = g_1^{(x_1-y_1)/(x_2-y_2)}$ (exponents in \mathbb{Z}_q^*)
 - i.e., w.r.t. a random base g₁, can compute DL of a random element g₂. Breaks DL!
 - Hash halves the size of the input

Domain Extension

- Full-domain hash: hash arbitrarily long strings to a single hash value
 - So far, UOWHF/CRHF which have a fixed domain
- First, simpler goal: a extend to a larger, fixed domain
 - Assume we are given a hash function from two blocks to one block (a block being, say, k bits)
 - What if we can compress by only one bit (e.g., our UOWHF construction)?
 - Can just apply repeatedly to compress by t bits



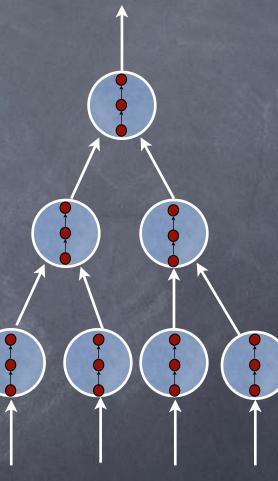
Domain Extension

Can compose hash functions more efficiently, using a "Merkle tree"

Suppose basic hash from {0,1}^{2k} to {0,1}^k. A hash function from {0,1}^{8k} to {0,1}^k using a tree of depth 3

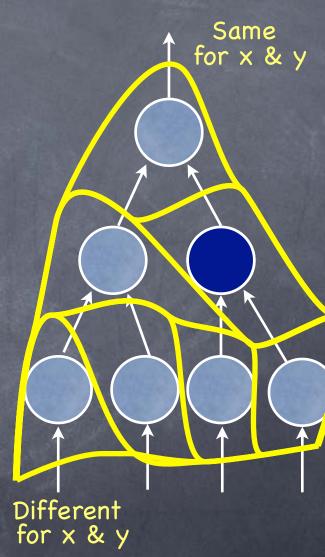
If basic hash from {0,1}^{2k} to {0,1}^{2k-1}, first construct new basic hash from {0,1}^{2k} to {0,1}^k, by repeated hashing

- Any tree can be used, with consistent I/O sizes
- Independent hashes or same hash?
 - Depends!



Domain Extension for CRHF

- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- o If a collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision (x',y') for basic hash
 - Consider moving a "frontline" from bottom to top. Look for equality on this front.
 - Collision at some step (different values on ith front, same on i+1st); gives a collision for basic hash
- A*(h): run A(h) to get $(x_1...x_n)$, $(y_1...y_n)$. Move frontline to find (x',y')



Domain Extension for UOWHF

h₃

h₂

 h_1

h₂

 h_1

h₁

For UOWHF, can't use same basic hash throughout!

A* has to output an x' on getting (x₁...x_n) from A, before getting h

Can guess a random node (i.e., random pair of frontlines) where collision occurs, but if not a leaf, can't compute x' until h is fixed!

- Solution: a different h for each level of the tree (i.e., no ancestor/successor has same h)
 - To compute x': Get (x₁...x_n) from A. Then pick a random node (say at level i), pick h_j for levels below i, and compute input to the node; let this be x'.
 - On getting h, plug it in as h_i , pick h_j for remaining levels; give h's to A and get $(y_1...y_n)$; compute y' and output it.

UOWHF vs. CRHF

- UOWHF has a weaker guarantee than CRHF
- OUWHF can be built based on OWF (we saw based on OWP), where as CRHF "needs stronger assumptions"
 - But "usual" OWF candidates suffice for CRHF too (we saw construction based on discrete-log)
- Domain extension of CRHF is simpler, with no blow-up in the description size. For UOWHF description increases logarithmically in the input size
- UOWHF theoretically important (based on simpler assumptions, good if paranoid), but CRHF can substitute for it
- Current practice: much less paranoid; faith on efficient, ad hoc (and unkeyed) constructions (though increasingly under attack)

Domain Extension

- Full-domain hash: hash arbitrarily long strings to a single hash value
 - Merkle-Tree construction extends the domain to any fixed input length
- Hash the message length (number of blocks) along with the original hash
 - Collision in the new hash function gives either collision at the top level, or if not, collision in the original Merkle tree and for the same message length

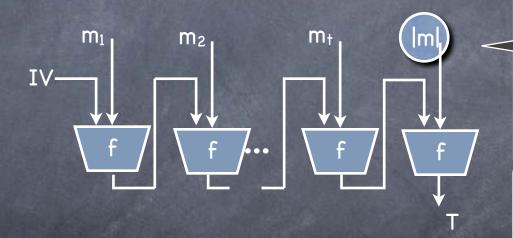
Im

Hash Functions in Practice

A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)

Often from a fixed input-length compression function

Merkle-Damgård iterated hash function, MDf:



Collision resistance even with variable input-length.

Note: Unlike MACs, here "length-extension" is OK, as long as it results in a different hash value

If f is not keyed, but "concretely" collision resistant, so is MDf

- If f collision resistant then so is MDf (for any IV)
 - If f modelled as a Random Oracle, MDf is a "public-use RO."
 If f modelled as an "Ideal Cipher," MDf is "pre-image aware."