Hash Functions (ctd.)

Lecture 15
Main syntactic feature: Variable input length to fixed length output

Primary requirement: collision-resistance

If for all PPT A, \(\Pr[x \neq y \text{ and } h(x) = h(y)] \) is negligible in the following experiment:

\[A \rightarrow (x, y); \quad h \leftarrow \mathcal{H} : \text{Combinatorial Hash Functions} \]

\[A \rightarrow x; \quad h \leftarrow \mathcal{H}; \quad A(h) \rightarrow y : \text{Universal One-Way Hash Functions} \]

\[h \leftarrow \mathcal{H}; \quad A(h) \rightarrow (x, y) : \text{Collision-Resistant Hash Functions} \]

\[h \leftarrow \mathcal{H}; \quad A^h \rightarrow (x, y) : \text{Weak Collision-Resistant Hash Functions} \]

\[h \leftarrow \mathcal{H}; \quad x \leftarrow X; \quad A(h, h(x)) \rightarrow y : \text{One-Way Hash Functions} \quad (x = y \text{ OK}) \]

\[h \leftarrow \mathcal{H}; \quad x \leftarrow X; \quad A(h, x) \rightarrow y : \text{SPR Hash Functions} \]

Also often required: “unpredictability”

Already saw: a 2-UHF (chop(ax+b) over a field)

Today: UOWHF and CRHF constructions. Domain Extension.
Universal One-Way HF: $A \rightarrow x; \ h \leftarrow \mathcal{U}; \ A(h) \rightarrow y. \ h(x) = h(y) \ \text{w.n.p}$

Since the hash function is compressing, then there will be collisions. So a computationally unbounded adversary can win this game!

Need to rely on computational hardness

UOWHF can be constructed from OWF

Much easier to see $\text{OWP} \Rightarrow \text{UOWHF}$
UOWHF from OWP

\[F_h(x) = h(f(x)), \text{ where } f \text{ is a OWP and } h \text{ from a UHF family} \]

\[\text{s.t. } h \text{ compresses by a bit (i.e., is a 2-to-1 map), and} \]

\[\text{for all } z, z', w, \text{ can efficiently solve for } h \text{ s.t. } h(z) = h(z') = w \]

Is a UOWHF: can choose \(h \) to force UOWHF adversary to invert \(f \)

\[
\text{BreakOWP}(z) \begin{cases}
\text{Get } x \leftarrow A; \text{ Sample random } w; \text{ Solve } h \text{ s.t. } h(z) = h(f(x)) = w; \\
\text{Give } h \text{ to } A; \text{ Get } y \leftarrow A \text{ and output } y;
\end{cases}
\]

Only collision \((y \neq x \text{ s.t. } F_h(x) = F_h(y)) \) is \(y = f^{-1}(z) \)
UOWHF from OWP

- $F_h(x) = h(f(x))$, where f is a OWP and h from a UHF family

- s.t. h compresses by a bit (i.e., is a 2-to-1 map), and

- for all z, z', w, can efficiently solve for h s.t. $h(z) = h(z') = w$

Is a UOWHF: can choose h to force UOWHF adversary to invert f

```
BreakOWP(z) { Get x ← A; Sample random w; Solve h s.t. h(z) = h(f(x)) = w; Give h to A; Get y ← A and output y; }
```

- Only collision ($y ≠ x$ s.t. $F_h(x) = F_h(y)$) is $y = f^{-1}(z)$

- BreakOWP is efficient as h can be efficiently solved ✓

- BreakOWP has same advantage as A has against UOWHF? Yes, if h is uniform (independent of x) [Why?]

- h uniform because z, w picked uniformly ✓
Collision-Resistant HF: $h \leftarrow \#; A(h) \rightarrow (x, y)$. $h(x) = h(y)$ w.n.p

Not known to be possible from OWF/OWP alone

“Impossibility” (blackbox-separation) known

Possible from “claw-free pair of permutations”

In turn from hardness of discrete-log, factoring, and from lattice-based assumptions

Also from “homomorphic one-way permutations”, and from homomorphic encryptions

All candidates use mathematical operations that are considered computationally expensive
CRHF

- CRHF from discrete log assumption:
 - Suppose G a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}_{p^*} for $p=2q+1$ a safe prime)
 - $h_{g_1,g_2}(x_1,x_2) = g_1^{x_1}g_2^{x_2}$ (in G) where g_1, $g_2 \neq 1$ (hence generators)
 - A collision: $(x_1,x_2) \neq (y_1,y_2)$ s.t. $h_{g_1,g_2}(x_1,x_2)= h_{g_1,g_2}(y_1,y_2)$
 - Collision $\Rightarrow x_1 \neq y_1$ and $x_2 \neq y_2$ [Why?]
 - Then $g_2 = g_1^{(x_1-y_1)/(x_2-y_2)}$ (exponents in \mathbb{Z}_{q^*})
 - i.e., w.r.t. a random base g_1, can compute DL of a random element g_2. Breaks DL!
 - Hash halves the size of the input
Domain Extension

- **Full-domain hash**: hash arbitrarily long strings to a single hash value
 - So far, UOWHF/CRHF which have a fixed domain
 - First, simpler goal: extend to a larger, fixed domain

Assume we are given a hash function from two blocks to one block (a block being, say, k bits)

- What if we can compress by only one bit (e.g., our UOWHF construction)?

 Can just apply repeatedly to compress by \(t \) bits
Domain Extension

Can compose hash functions more efficiently, using a “Merkle tree”

Suppose basic hash from \(\{0,1\}^{2^k}\) to \(\{0,1\}^{2k}\). A hash function from \(\{0,1\}^{8k}\) to \(\{0,1\}^k\) using a tree of depth 3

If basic hash from \(\{0,1\}^{2^k}\) to \(\{0,1\}^{2k-1}\), first construct new basic hash from \(\{0,1\}^{2k}\) to \(\{0,1\}^k\), by repeated hashing

Any tree can be used, with consistent I/O sizes

Independent hashes or same hash?

Depends!
For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.

If a collision \((x_1...x_n), (y_1...y_n)\) over all, then some collision \((x',y')\) for basic hash.

Consider moving a “frontline” from bottom to top. Look for equality on this front.

Collision at some step (different values on \(i^{th}\) front, same on \(i+1^{st}\)); gives a collision for basic hash.

\(A^*(h):\) run \(A(h)\) to get \((x_1...x_n), (y_1...y_n)\). Move frontline to find \((x',y')\)
Domain Extension for UOWHF

- For UOWHF, can’t use same basic hash throughout!
- A^* has to output an x' on getting $(x_1...x_n)$ from A, before getting h
 - Can guess a random node (i.e., random pair of frontlines) where collision occurs, but if not a leaf, can’t compute x' until h is fixed!
- Solution: a different h for each level of the tree (i.e., no ancestor/successor has same h)
 - To compute x': Get $(x_1...x_n)$ from A. Then pick a random node (say at level i), pick h_j for levels below i, and compute input to the node; let this be x'.
 - On getting h, plug it in as h_i, pick h_j for remaining levels; give h's to A and get $(y_1...y_n)$; compute y' and output it.
UOWHF vs. CRHF

- UOWHF has a weaker guarantee than CRHF
- UOWHF can be built based on OWF (we saw based on OWP), whereas CRHF “needs stronger assumptions”
 - But “usual” OWF candidates suffice for CRHF too (we saw construction based on discrete-log)
- Domain extension of CRHF is simpler, with no blow-up in the description size. For UOWHF description increases logarithmically in the input size
- UOWHF theoretically important (based on simpler assumptions, good if paranoid), but CRHF can substitute for it
- Current practice: much less paranoid; faith on efficient, ad hoc (and unkeyed) constructions (though increasingly under attack)
Domain Extension

Full-domain hash: hash arbitrarily long strings to a single hash value

- Merkle-Tree construction extends the domain to any fixed input length

- Hash the message length (number of blocks) along with the original hash

- Collision in the new hash function gives either collision at the top level, or if not, collision in the original Merkle tree and for the same message length

![Diagram of Merkle Tree with hash length (|m|) at the top](image)
Hash Functions in Practice

A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)

Often from a fixed input-length compression function

Merkle-Damgård iterated hash function, MD^f:

If f is collision resistant then so is MD^f (for any IV)

If f modelled as a Random Oracle, MD^f is a “public-use RO.”
If f modelled as an “Ideal Cipher,” MD^f is “pre-image aware.”