
Hashes & MAC.

Digital Signatures

Lecture 16

One-time MAC
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

Key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

Negligible probability that Eve can produce a signature on m’≠m

A much more efficient solution, using 2-UHF (and still no
computational assumptions):

Onetime-MACh(M) = h(M), where h←H, and H is a 2-UHF

Seeing hash of one input gives no information on hash of
another value

r10 r20 r30

r11 r21 r31

MAC
With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)

CBC-MAC: Extends to any fixed length domain

Alternate approach (for fixed length domains):

MACK,h*(M) = PRFK(h(M)) where h←H, and H a combinatorial
hash function (e.g. 2-UHF)

m1 m2 mt

FK FK FK

⊕ ⊕

T

...

If truly random function, adversary only learns if
hash collision occurred or not (h nor h(M) revealed).  

 

Combinatorial hash ⇒ Unlikely collision ever occurs

Finite domain

A proper MAC must work on inputs of variable length

Recall: making CBC-MAC work securely with variable input-length.

- Derive K as FK’(t), where t is the number of blocks

- Or, Use first block to specify number of blocks

- Or, output not the last tag T, but FK’(T), where K’ an independent key (EMAC)

- Or, XOR last message block with another key K’ (CMAC)

Alternate idea: Leave variable input-lengths to the hash

But combinatorial hash functions worked with a fixed domain

Will use a cryptographic hash function

MAC*K,h(M) = MACK(h(M)) where h←H, and H a weak-CRHF

Weak-CRHFs can be based on OWF. Or, can be more  
efficiently constructed from fixed input-length MACs

MAC
With Cryptographic Hash Functions

h(M) may be
revealed, but
only oracle
access to h

MAC
With Cryptographic Hash Functions

MAC*K,h(M) = MACK(h(M)) where h←H, and H a weak-CRHF

Weak-CRHFs can be based on OWF. Or, can be more  
efficiently constructed from fixed input-length MACs.

Unlike the domain extension (to fixed length domain) using 2-UHF,
or CBC-MAC, this doesn’t rely on pseudorandomness of MAC

Works with any one-block MAC (not just a PRF based MAC)

Could avoid “export restrictions” by not being a PRF

Candidate fixed input-length MACs: compression functions (with
key as IV)

Recall: Compression functions used in Merkle-Damgård
iterated hash functions

HMAC
HMAC: Hash-based MAC

Essentially built from a compression
function f

If keys K1, K2 independent (called
NMAC), then secure MAC if: f is  
a fixed input-length MAC & the
Merkle-Damgård iterated-hash is a
weak-CRHF

In HMAC (K1,K2) derived from (K’,K’’),
in turn heuristically derived from a
single key K. If f is a (weak kind of)
PRF K1, K2 can be considered
independent

K’’

f

IV

T

M

K’

f

IV

m1 mt

...f f f

|m|

f

K2

K1

Hash Not a Random Oracle!
Hash functions are no substitute for RO, especially if built
using iterated-hashing (even if the compression function was
to be modeled as an RO)

If H is a Random Oracle, then just H(K||M) will be a MAC

But if H is a Merkle-Damgård iterated-hash function, then
there is a simple length-extension attack for forgery

(That attack can be fixed by preventing extension:
prefix-free encoding)

Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned
out to be flawed too (even before breaking SHA1)

Digital Signatures

Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.  
Security: Same experiment as MAC’s, but adversary given VK

VK

Mi

si =

SignSK(Mi)

(M,s)

VerVK(M,s)

Advantage = Pr[VerVK(M,s)=1 and (M,s) ∉ {(Mi,si)}]

SigSK VerVK

Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.  
Security: Same experiment as MAC’s, but adversary given VK

Secure digital signatures using OWF, UOWHF and PRF

Hence, from OWF alone (more efficiently from OWP)

More efficient using CRHF instead of UOWHF

Even more efficient based on (strong) number-theoretic
assumptions

e.g. Cramer-Shoup Signature based on “Strong RSA
assumption”

Efficient schemes secure in the Random Oracle Model

e.g. RSA-PSS in RSA Standard PKCS#1

