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One-time MAC 
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):


Key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

Negligible probability that Eve can produce a signature on m’≠m


A much more efficient solution, using 2-UHF (and still no 
computational assumptions):


Onetime-MACh(M) = h(M), where h←H, and H is a 2-UHF


Seeing hash of one input gives no information on hash of 
another value
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MAC 
With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)


CBC-MAC: Extends to any fixed length domain


Alternate approach (for fixed length domains):


MACK,h*(M) = PRFK(h(M)) where h←H, and H a combinatorial 
hash function (e.g. 2-UHF)
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If truly random function, adversary  only learns if 
hash collision occurred or not (h nor h(M) revealed).  

 

Combinatorial hash ⇒ Unlikely collision ever occurs

Finite domain



A proper MAC must work on inputs of variable length


Recall: making CBC-MAC work securely with variable input-length.

- Derive K as FK’(t), where t is the number of blocks

- Or, Use first block to specify number of blocks

- Or, output not the last tag T, but FK’(T), where K’ an independent key (EMAC)

- Or, XOR last message block with another key K’ (CMAC)


Alternate idea: Leave variable input-lengths to the hash

But combinatorial hash functions worked with a fixed domain

Will use a cryptographic hash function


MAC*K,h(M) = MACK(h(M)) where h←H, and H a weak-CRHF


Weak-CRHFs can be based on OWF. Or, can be more  
efficiently constructed from fixed input-length MACs

MAC 
With Cryptographic Hash Functions

h(M) may be 
revealed, but 
only oracle 
access to h



MAC 
With Cryptographic Hash Functions

MAC*K,h(M) = MACK(h(M)) where h←H, and H a weak-CRHF


Weak-CRHFs can be based on OWF. Or, can be more  
efficiently constructed from fixed input-length MACs.


Unlike the domain extension (to fixed length domain) using 2-UHF, 
or CBC-MAC, this doesn’t rely on pseudorandomness of MAC


Works with any one-block MAC (not just a PRF based MAC)


Could avoid “export restrictions” by not being a PRF


Candidate fixed input-length MACs: compression functions (with 
key as IV)


Recall: Compression functions used in Merkle-Damgård 
iterated hash functions



HMAC
HMAC: Hash-based MAC


Essentially built from a compression 
function f


If keys K1, K2 independent (called 
NMAC), then secure MAC if: f is  
a fixed input-length MAC & the 
Merkle-Damgård iterated-hash is a 
weak-CRHF


In HMAC (K1,K2) derived from (K’,K’’), 
in turn heuristically derived from a 
single key K. If f is a (weak kind of) 
PRF K1, K2 can be considered 
independent
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Hash Not a Random Oracle!
Hash functions are no substitute for RO, especially if built 
using iterated-hashing (even if the compression function was 
to be modeled as an RO)


If H is a Random Oracle, then just H(K||M) will be a MAC


But if H is a Merkle-Damgård iterated-hash function, then 
there is a simple length-extension attack for forgery


(That attack can be fixed by preventing extension: 
prefix-free encoding)


Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned 
out to be flawed too (even before breaking SHA1)



Digital Signatures



Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.  
Security: Same experiment as MAC’s, but adversary given VK

VK

Mi

si = 

SignSK(Mi)

(M,s)

VerVK(M,s)

Advantage = Pr[ VerVK(M,s)=1 and (M,s) ∉ {(Mi,si)} ]

SigSK VerVK



Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.  
Security: Same experiment as MAC’s, but adversary given VK


Secure digital signatures using OWF, UOWHF and PRF


Hence, from OWF alone (more efficiently from OWP)


More efficient using CRHF instead of UOWHF


Even more efficient based on (strong) number-theoretic 
assumptions


e.g. Cramer-Shoup Signature based on “Strong RSA 
assumption”


Efficient schemes secure in the Random Oracle Model


e.g. RSA-PSS in RSA Standard PKCS#1


