Digital Signatures (ctd.)

Lecture 17

y Digital Signatures

@ Syntax: KeyGen, Signsk and Verifyvk.
Security: Same experiment as MACS, but adversary given VK

lVQI”VK(M,s)

Advantage = Pr[Veryk(M,s)=1 and (M,s) & {(Misi)}]
Weaker variant: Advantage = Pr[Vervk(M,s)=1 and M ¢ {M}]

y Digital Signatures

@ Syntax: KeyGen, Signsk and Verifyvk.
Security: Same experiment as MACS, but adversary given VK

@ Secure digital signatures using OWF, UOWHF and PRF
@ Hence, from OWF alone (more efficiently from OWP)
@ More efficient using CRHF instead of UOWHF

@ Even more efficient based on (strong) number-theoretic
assumptions

@ e.g. Cramer-Shoup Signature based on “"Strong RSA
assumption”

@ Efficient schemes secure in the Random Oracle Model

@ e.g. RSA-PSS in RSA Standard PKCS#1

One-time Digital Signatures

@ Recall One-time MAC to sign a single n bit message

Lamports
One-Time
Signature

@ Shared secret key: 2n random strings (each k-bit long) (rio,ri1)i-1.n

@ Signature for my..m, be (rimi)iz1.n

@ One-Time Digital Signature: Same signing key and
signature, but VK= (f(rip),f(ri1))i-1..n where f is a OWF

@ Verification applies f to signature elements and
compares with VK

@ Security [Exercise]

f(rio) | f(r2o) [f(r3o)

f(rty) | £(r2) | £(r3,)
l"lo T‘Zo l"3o
rl rg) r3

Full-Fledged Signatures

@ Lamports scheme is one-time and has a fixed-length message (and
SK/VK are much longer than the message)

@ One-time, fixed-length signatures (Lamport)

“Certificate Tree” . many-time, fixed-length signatures (using PRF)
Pomain-Extension . ful|-fledged signatures (using UOWHF)

@ So full-fledged digital signatures can be entirely based on OWF
@ Hash-and-Sign domain extension for signatures

@ Domain extension can be done using CRHF (more efficient) or
UOWHF (more secure)

One-Time — Many-Times

@ Certificate chain: VK; — (VK32 02) — ... — (VKy, ot) — (m,o0)
where g is a signature on VK; that verifies w.r.t. VK

@ Suppose a ‘trustworthy” signer only signs the verification key of
another “trustworthy” signer. Then, if VK, is known to be issued by
a trustworthy signer, and all links verified, then the message is
signed by a trustworthy signer.

@ Certificate tree for one-time — many-times signatures
@ Idea: Each message is signed using a unique VK for that message

@ Verifier cant hold all VKs: A binary tree of VKs, with each leaf
designated for a message. Parent VK signs its pair of children
VKs (one-time, fixed-length sign). Verifier remembers only root
VK. Signer provides a certificate chain to the leaf VK used.

@ Signer cant remember all SKs: Uses a PRF to define the tree
(i.e., SK for each node), and remembers only the PRF seed

Domain Extension of
Signatures using Hash

@ Domain extension using a CRHF (not weak CRHF, unlike for MAC)
@ Sign*skn(M) = Signsk(h(M)) where h<# in both SK*VK*
@ Security: Forgery gives either a hash collision or a forgery for
the original (finite domain) signature
@ Formal reduction to a pair of adversaries. Hash adversary
sends h it receives as part of VK
@ Can use UOWHF, with fresh h every time (included in signature)
@ Sign*sk(M) = ('h,Signsk(h,h(M))) where h<# picked by signer
@ Security?
@ To use a signature s; in forgery, need M such that h(M)=h(M).
But h is picked by signing algorithm after M; is submitted.
Breaks UOWHF security by finding such a collision.

@ In reduction, hash adversary guesses an i where collision
occurs and sends h it received as part of signature

More Efficient Signatures

@ Diffie-Hellman suggestion (heuristic): Sign(M) = f-}(M) where
(SK,VK) = (f-1,f), a Trapdoor OWP pair. Verify(M,c) = 1 iff f(c)=M.

@ Attack: pick o, let M=f(c) (Existential forgery)

@ Fix: Sign(M) = f-1(Hash(M))

@ Secure? Adversary gets to choose M and hence Hash(M); so
signing oracle gives adversary access to f-! oracle. But Trapdoor
OWRP gives no guarantees when adversary is given f-! oracle.

@ If Hash(.) modeled as a random oracle then adversary can't
choose Hash(M), and effectively doesnt have access to f-!
oracle. Then indeed secure

@ “Standard schemes” like RSA-PSS are based on this

Proving Security in the
RO Model

@ To prove: If Trapdoor OWP secure, then Sign(M) = f-}(Hash(M)) is a

secure digital signature in the RO Model, with Hash modelled as a
random oracle

@ Intuition: adversary only sees (x,f-!(x)) where x is random,
which it could have obtained anyway, by picking f-{(x) first

@ Modeling as an RO: RO randomly initialized to a random function H
from {0,1}* to {0,1}k

@ Signer and verifier (and forger) get oracle access to H(.)

@ All probabilities also over the initialization of the RO

Proving Security in ROM

@ Reduction: If A forges signature (where Sign(M) = f-}(H(M)) with
(f,f-1) from Trapdoor OWP and H an RO), then A* that can break
Trapdoor OWP (i.e., given just f, and a random challenge z, can
find f-4(z) w.n.n.p). A*(f,z) runs A internally.

@ A expects f, access to the RO and a signing oracle f-}(Hash(.))
and outputs (M,s) as forgery

@ A can implement RO: a random
response to each new query! e

@ A gets f, but doesnt have f-! to sign

@ But x = H(M) is a random value that
A“ can pick!

@ A* picks H(M) as x=f(y) for random v;
then Sign(M) = f-i(x) = vy

Proving Security in ROM

@ A* s.t. if A forges signature, then A can break Trapdoor OWP
@ A* implements H and Sign: For each new M queried to H
(including by Sign), A sets H(M)=Ff(y) for random y; Sign(M) =y
@ But A* should force A to invert z
@ For a random (new) query M (say tth) A* sets H(M)=z

@ Here queries include the “last
query” to H, i.e., the one for y’
verifying the forgery (which
may or may not be a new query)

.
o
.
.
.

.
““
.
PSP\

@ Given a bound q on the number of
queries that A makes to Sign/H, with
probability 1/q, A“ would have set
H(M)=z, where M is the message in the
forgery

@ In that case forgery = o = f-i(z)

Schnorr Signature

Public parameters: (G,g) where G is a prime-order group and g a
generator, for which DLA holds, and a random oracle H

@ Or (G,g) can be picked as part of key generation

Signing Key: y € Zq where G is of order q. Verification Key: Y = gv
Signy(M) = (e,s) where e = H(MIllgr) and s = r-ye, for a random r
Verifyy(M,(e,s)): Compute R = gs-Ye and check e = H(M|IR)

Secure in the Random Oracle model under the Discrete Log
Assumption for a group

@ Alternately, under a heuristic model for the group (called the
Generic Group Model), but under standard-model assumptions
on the hash function

