
Digital Signatures (ctd.)
Lecture 17

Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.  
Security: Same experiment as MAC’s, but adversary given VK

VK

Mi

si =

SignSK(Mi)

(M,s)

VerVK(M,s)

Advantage = Pr[VerVK(M,s)=1 and (M,s) ∉ {(Mi,si)}]

SigSK VerVK

Weaker variant: Advantage = Pr[VerVK(M,s)=1 and M ∉ {Mi}]

RE
CA

LL

Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.  
Security: Same experiment as MAC’s, but adversary given VK

Secure digital signatures using OWF, UOWHF and PRF

Hence, from OWF alone (more efficiently from OWP)

More efficient using CRHF instead of UOWHF

Even more efficient based on (strong) number-theoretic
assumptions

e.g. Cramer-Shoup Signature based on “Strong RSA
assumption”

Efficient schemes secure in the Random Oracle Model

e.g. RSA-PSS in RSA Standard PKCS#1

RE
CA

LL

Recall One-time MAC to sign a single n bit message

Shared secret key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

r10 r20 r30

r11 r21 r31

One-time Digital Signatures

One-Time Digital Signature: Same signing key and
signature, but VK= (f(ri0),f(ri1))i=1..n where f is a OWF

Verification applies f to signature elements and
compares with VK

Security [Exercise]

f(r10) f(r20) f(r30)

f(r11) f(r21) f(r31)

Lamport’s
One-Time
Signature

Full-Fledged Signatures

Lamport’s scheme is one-time and has a fixed-length message (and
SK/VK are much longer than the message)

One-time, fixed-length signatures (Lamport)  
 “Certificate Tree”→ many-time, fixed-length signatures (using PRF) 
 Domain-Extension→ full-fledged signatures (using UOWHF)

So full-fledged digital signatures can be entirely based on OWF

Hash-and-Sign domain extension for signatures

Domain extension can be done using CRHF (more efficient) or
UOWHF (more secure)

One-Time → Many-Times
Certificate chain: VK1 → (VK2, σ2) → … → (VKt, σt) → (m,σ) 
where σi is a signature on VKi that verifies w.r.t. VKi-1

Suppose a “trustworthy” signer only signs the verification key of
another “trustworthy” signer. Then, if VK1 is known to be issued by
a trustworthy signer, and all links verified, then the message is
signed by a trustworthy signer.

Certificate tree for one-time → many-times signatures

Idea: Each message is signed using a unique VK for that message

Verifier can’t hold all VKs: A binary tree of VKs, with each leaf
designated for a message. Parent VK signs its pair of children
VKs (one-time, fixed-length sign). Verifier remembers only root
VK. Signer provides a certificate chain to the leaf VK used.

Signer can’t remember all SKs: Uses a PRF to define the tree
(i.e., SK for each node), and remembers only the PRF seed

Domain Extension of
Signatures using Hash

Domain extension using a CRHF (not weak CRHF, unlike for MAC)

Sign*SK,h(M) = SignSK(h(M)) where h←H in both SK*,VK*

Security: Forgery gives either a hash collision or a forgery for
the original (finite domain) signature

Formal reduction to a pair of adversaries. Hash adversary
sends h it receives as part of VK

Can use UOWHF, with fresh h every time (included in signature)

Sign*SK(M) = (h,SignSK(h,h(M))) where h←H picked by signer

Security?

To use a signature si in forgery, need M such that h(M)=h(Mi).
But h is picked by signing algorithm after Mi is submitted.
Breaks UOWHF security by finding such a collision.

In reduction, hash adversary guesses an i where collision
occurs and sends h it received as part of signature

More Efficient Signatures
Diffie-Hellman suggestion (heuristic): Sign(M) = f-1(M) where
(SK,VK) = (f-1,f), a Trapdoor OWP pair. Verify(M,σ) = 1 iff f(σ)=M.

Attack: pick σ, let M=f(σ) (Existential forgery)

Fix: Sign(M) = f-1(Hash(M))

Secure? Adversary gets to choose M and hence Hash(M); so
signing oracle gives adversary access to f-1 oracle. But Trapdoor
OWP gives no guarantees when adversary is given f-1 oracle.

If Hash(.) modeled as a random oracle then adversary can’t
choose Hash(M), and effectively doesn’t have access to f-1
oracle. Then indeed secure

“Standard schemes” like RSA-PSS are based on this

Proving Security in the
RO Model

To prove: If Trapdoor OWP secure, then Sign(M) = f-1(Hash(M)) is a
secure digital signature in the RO Model, with Hash modelled as a
random oracle

Intuition: adversary only sees (x,f-1(x)) where x is random,
which it could have obtained anyway, by picking f-1(x) first

Modeling as an RO: RO randomly initialized to a random function H
from {0,1}* to {0,1}k

Signer and verifier (and forger) get oracle access to H(.)

All probabilities also over the initialization of the RO

Proving Security in ROM
Reduction: If A forges signature (where Sign(M) = f-1(H(M)) with
(f,f-1) from Trapdoor OWP and H an RO), then A* that can break
Trapdoor OWP (i.e., given just f, and a random challenge z, can
find f-1(z) w.n.n.p). A*(f,z) runs A internally.

A expects f, access to the RO and a signing oracle f-1(Hash(.))
and outputs (M,σ) as forgery
A* can implement RO: a random
response to each new query!

A* gets f, but doesn’t have f-1 to sign

But x = H(M) is a random value that
A* can pick!

A* picks H(M) as x=f(y) for random y;
then Sign(M) = f-1(x) = y

(f,z)

A

Mi

f-1(H(Mi)) (M,σ)

Sig Mj H(Mj)

H

Proving Security in ROM
A* s.t. if A forges signature, then A* can break Trapdoor OWP

A* implements H and Sign: For each new M queried to H
(including by Sign), A* sets H(M)=f(y) for random y; Sign(M) = y

But A* should force A to invert z

For a random (new) query M (say tth) A* sets H(M)=z

Here queries include the “last
query” to H, i.e., the one for
verifying the forgery (which
may or may not be a new query)

Given a bound q on the number of
queries that A makes to Sign/H, with
probability 1/q, A* would have set
H(M)=z, where M is the message in the
forgery

In that case forgery ⇒ σ = f-1(z) A

Mi

f-1(H(Mi)) (M,σ)

Sig

(f,z)

Mj H(Mj)

H

σ

Schnorr Signature
Public parameters: (G,g) where G is a prime-order group and g a
generator, for which DLA holds, and a random oracle H

Or (G,g) can be picked as part of key generation

Signing Key: y ∈ Zq where G is of order q. Verification Key: Y = gy

Signy(M) = (e,s) where e = H(M||gr) and s = r-ye, for a random r

VerifyY(M,(e,s)): Compute R = gs⋅Ye and check e = H(M||R)

Secure in the Random Oracle model under the Discrete Log
Assumption for a group

Alternately, under a heuristic model for the group (called the
Generic Group Model), but under standard-model assumptions
on the hash function

