Secure Messaging

Lecture 23

Messaging

1

)

/
="
sy

-4

Secure Messaging

Corruption model

Server/network is adversarial (but trusted identity registration
needed)

Windows of compromise when a party is under adversarial
control (or readable to adversary)

@ Messages that are sent/received while a party is corrupt are
revealed to the adversary

@ Goal: Messages sent/received prior to compromise and after
compromise should remain “secure”

@ Forward secrecy (secrecy of prior messages) and
"Future secrecy” (secrecy of future messages)

@ Assumes that secure deletion is possible

Secure Messaging

@ Communication model different from standard setting for TLS
@ Many applications/services offering secure chat

@ "Off-The-Record” messaging (2004)

@ Signal protocol (starting 2013)

@ Used in WhatsApp, Google Allo, Facebook Messenger,
Skype (optional), etc.

@ Some formal analysis (2017)

Synchronous Messaging
A first solution

Encexd(m;) PK3 7 Y o,

) < ! - Encex(m’y) PKL A

Alice 20))

Encexi(mz) PK4 d >

¢ ™ EnCPKi(m'z) pK%
@ PK$ should be used only once (over all senders), so that SK% can
be deleted after recovering mo

@ E.g., Alice may download PK% from a list of PKs hosted by a
server who deletes each PK on download

Synchronous Messaging
A first solution

Encexd(m;) PK3 7 Y o,

- ¢ N - Enceci(m’y) PKL A

Alice Bob

Encexi(mz) PK4 d >

¢ ™ = EnCPKi(m'z) pK%

@ (SKi,PKi) are generated just before sending PKi and deleted right
after using SKi for decryption (window for compromising SKi)

@ At any point only one SK stored

@ Assumes strict alternation

An Optimization

included!
o
Encexd(m;) PK3 S 4
-
? ¢ N7 - Encexi(m’y) PK% :
‘ -
Enceci(mz) PK4 i 5
- |
¢ ™ EnCPKi(m'z) pK%

@ Consider using El Gamal encryption: PK3=gy, ciphertext = (gx,MK)
and PKj=g¥. Use gx in the ciphertext as next PK?

@ Can be OK when a symmetric key is derived using a random
oracle, under stronger assumptions than DDH

Alice

Asynchronicity

Enced(m;) PKL

Encexi(mz) PK4

Vs

.

J

SK, should be
remembered until
PKZ ack’ed and
some time passes

{

<

Encexi(m”;) PK% 4

Bob

Enceci(m’z) PKL

o N

Have to
continue

using PK,

Typical choice:
Repeat PKguntil a

message received
(then dont use
derived key

| as one-time pad!) |

@ Ideally, should be able to delete the decryption key right after

using it for a single decryption

Ratcheting

Suppose Alice and Bob have shared a symmetric key

Want forward secrecy without need for synchronisation

Rafcheting M=
fdbbd fé4

Ki — Kis;1 using a "forward-secure PRG” s.t. Ki remains
pseudorandom even given Ki;

After using Ki for encryption/decryption, derive K1 and delete K;

Does not help with “future secrecy”

.. Double Ratcheting

K9 SKEk®(m1) X S ;
EK% SKE(m2) X, =

> X1 Yi
_ SKEk9(my) Y. KS
& 2 Kli

X2 Yi
SKEKI%(m3) Xz

10
I<B

11

@ Update public-keys for every received message, and do symmetric
Key ratcheting for messages in between

@ Can delete an asymmetric secret key after the second symmetric
Key is derived from it

.. Double Ratcheting

K% SKEk%(mi) X - >
EK% SKEx(m2) X, -

e [SKEce(ml) Y: (KB
</‘f/§/ ~ SKEy(m3) Y, Klzi
L K%
X2 Y
n SKEKI%([TB) X,

K'g e 22

11

@ If messages received out of order, will need to retain symmetric
keys that were ratcheted through

4 X1 Y

Messaging

Need to protect against a
corrupt server.

i

4 1

hiee.

/ 7
2
it g

o

3
@ Symmetric keys are used for AEAD (e.g., using encrypt-then-MAC)

@ Asymmetric key updates are MAC'ed using a key derived from the
previous asymmetric key

@ (Long-term) Identity key (signature verification key) should be
obtained via (out-of-band) trusted setup

Establishing Identity

Easy fo ensure that conversation is with an entity who created a_
certain “identity key” (signature verification key) ﬁlni’rial encryption
rson

PK will be signed
with this

But in real life, want to ensure it is a certain pe

A malicious server can launch an adversary-in-the-middle attack)
Options (can use a combination):

@ Trusted key servers: Key servers will have to verify real-life
identity! Require “transparency” to deter corrupt servers.

@ Trust-On-First-Use: problematic assumption, e.qg., if server
always corrupt.

@ Manual key dissemination or via a web-of-trust
@ Use PAKE (need shared secrets)

@ KeyBase: proves control of social media identities instead of
"real-life” identity. Enough to trust at least one service.

Deniability
Suppose Alice and Bob chat with each other. Later, Bob turns
over the transcript to a "Judge”

Can Alice claim that she is not responsible for the transcript?

@ Problem: If the messages are signed by Alice, she cant deny
responsibility

@ Assumption: Alice is responsible for keeping her private keys
secure (and her public key is known to the Judge)

Alice should not sign the messages, but only MAC them

@ Bob also has the MAC key. So he could have faked the MACs
himsel f

@ More complicated if Judge observed the (encrypted)
transcript between Alice and Bob.

