
Homework 1

Cryptography & Network Security
CS 406 : Spring 2021

Released: Thu Jan 28
Due: Sun Feb 14

CPA-Secure Symmetric-Key Encryption [Total 100 pts]

1. Secure Computation with Perfect Secrecy [15 pts]

This problem considers a puzzle from Lecture 0, involving three parties, Alice, Bob and Carol. Alice and Bob are given
inputs x, y ∈ D (for some finite domain D) and Carol wishes to learn f(x, y) (for some function f : D ×D → Z).

We shall consider protocols that proceed as follows (specified in terms of a finite setR and three functions gA, gB , gC).
After Alice and Bob receive their inputs x and y respectively:

• Alice picks r ← R uniformly at random and sends r to Bob.

• Alice sends a message α = gA(x, r) to Carol and Bob sends β = gB(y, r) to Carol, where gA, gB : D ×R→ Q.

• Carol outputs z = gC(α, β), where gC : Q×Q→ Z.

By the nature of the protocol, Alice and Bob learn nothing about each other’s inputs (note that r is chosen indepen-
dently of x).

(a) State the perfect correctness requirement of the protocol formally, in terms of the sets D,R, and the functions
f, gA, gB , gC .

(b) Formalize a perfect secrecy requirement that Carol learns nothing other than f(x, y) in this protocol, by filling
in the blanks below.

∀ Pr
r←R

[ ]
= Pr

r←R

[ ]
Hint: Carol should not be able to differentiate between (x, y) and (x′, y′) such that f(x, y) = f(x′, y′).

(c) Suppose f(x, y) =

{
1 if x = y

0 otherwise.
Let R be the set of all permutations over D (so that |R| = |D|!), gA = gB =

g where g(w, r) = r(w) (i.e., apply the permutation r to w). What should gC be so that the protocol meets the
correctness requirement? Also, prove that the perfect secrecy condition above is met.

(d) Give a secure protocol for the case when f : {0, 1} × {0, 1} → {0, 1} is the AND function (i.e., f(x, y) = 1 iff
x = y = 1). No proof is required.

Hint: You can use the protocol from the previous part that computes feq : D′ ×D′ → {0, 1}, for an appropriately
chosen D′. Alice and Bob would locally map x, y ∈ D to x′, y′ ∈ D′, before invoking the protocol for feq.

2. IND-CPA and Perfect Correctness =⇒ SIM-CPA [15 pts]

Show that a perfectly correct encryption scheme that is IND-CPA secure is SIM-CPA secure.

Hint: You can use a simulator similar to the one we used for showing the analogous result for IND-Onetime and SIM-
Onetime. Use a reduction to argue that if the simulation is not good against some PPT adversary and environment, then
you can break the IND-CPA security.
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3. Hybrid Argument: Next-Bit Unpredictability implies Pseudorandomness. [20 pts]

Let Y denote a distribution ensemble over {0, 1}n, where n is a polynomial function of the security parameter k. Y
is said to be next-bit unpredictable if, for all PPT algorithms B, maxi∈[n] |Pry←Yk

[B(yi−1
1 ) = yi]−1/2| is negligible. Y

is said to be pseudorandom if for all PPT A, |Pry←Yk
[A(y) = 0]− Pry←Un[A(y) = 0]| is negligible, where Un denote

the uniform distribution over {0, 1}n.

Given a PPT distinguisher A, define a PPT predictor B to be as follows:

On input z ∈ {0, 1}i−1, pick b← {0, 1}, r ← {0, 1}n−i and output A(z||b||r)⊕ b. (Here || denotes concatenation)

For each i ∈ [n], define the distribution Hi over n-bit strings as the distribution of the string z produced by taking
y ← Yk, r ← Un−i, and letting z := yi1||r. Note that H0 = Un and Hn = Yk. For parts (a)-(e), fix an i ∈ [n].

(a) Let α(z) := Pry←Yk
[yi−1

1 = z] and q(z, b) := Prr←{0,1}n−i [A(z||b||r) = 0] for all z ∈ {0, 1}i−1 and b ∈ {0, 1}.
Compute Pry←Hi−1

[A(y) = 0] in terms of these two functions.

(b) Also, let β(z) := Pry←Yk
[yi = 0 | yi−1

1 = z]. Now, compute Pry←Hi
[A(y) = 0].

(c) For each z ∈ {0, 1}i−1, let γ(z) := Pr[B(z) = 0] (where the probability is over the randomness of the algorithm
B above). Compute γ(z) in terms of the quantities q(z, 0) and q(z, 1).

(d) Show that Pry←Yk
[B(yi−1

1 ) = yi | yi−1
1 = z] = 1

2 + 2(β(z)− 1
2 )(γ(z)− 1

2 ), for each z ∈ {0, 1}i−1.

(e) From the above parts establish that

| Pr
y←Yk

[B(yi−1
1 ) = yi]−

1

2
| = | Pr

y←Hi

[A(y) = 0]− Pr
y←Hi+1

[A(y) = 0]|.

(f) Using the fact that part (e) holds for all i ∈ [n], show that

| Pr
y←Yk

[A(y) = 0]− Pr
y←Un

[A(y) = 0]| ≤ n ·max
i∈[n]
| Pr
y←Yk

[B(yi−1
1 ) = yi]−

1

2
|.

If Y is next-bit unpredictable, then the RHS above is negligible (n being polynomial in k), and hence so is the
LHS. Since this holds for every PPT adversary A, we conclude that if Y is next-bit unpredictable, then it is
pseudorandom.
In the lecture we saw that pseudorandomness implies next-bit unpredictability. The above completes the
argument that the two definitions are equivalent.

4. Impossibility of deterministic CPA-secure encryption. Suppose a symmetric key encryption scheme has a de-
terministic encryption algorithm. Give an adversary in the IND-CPA experiment for SKE to show that this scheme
cannot be CPA-secure. [5 pts]

A consequence of the above is that the so-called “Electronic Code Book” mode of using a block-cipher is not an
IND-CPA secure SKE scheme.

5. One-Timeness of One-Time Pad. Consider a deterministic “two-message encryption scheme” to be a function
Enc2 : K ×M×M→ C × C. [5 pts]

(a) Define perfect secrecy for such an encryption scheme.

(b) Let M = K = C be the set of n-bit strings. Let Enc2(K,m1,m2) = (K ⊕ m1,K ⊕ m2), where ⊕ is bit-wise
xor-ing. Prove that this is not perfectly secret, according to your definition.

In particular, using a one-time pad to encrypt two messages will break perfect secrecy.

6. Statistical Indistinguishability. [10 pts]

Recall that for two distributions X and Y over n-bit strings, the statistical difference (a.k.a. variational distance)
between them is denoted by

∆(X,Y ) = max
S⊆{0,1}n

| Pr
x←X

[x ∈ S]− Pr
x←Y

[x ∈ S]|.

(Alternately, this can be phrased in terms of a statistical test T , which checks if x ∈ S for some subset S.)
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(a) Suppose G : {0, 1}k → {0, 1}n is a deterministic function, where n > k. Let X be the distribution of the output
of G(s) when s← {0, 1}k is chosen uniformly at random. Let Y be the uniform distribution over {0, 1}n. Show
that ∆(X,Y ) ≥ 1

2 . Conclude that the output of a pseudorandom random generator is quite distinguishable
from a truly random distribution, if computationally unbounded distinguishers are considered.

(b) Suppose Xk and Yk are distributions over 2-bit strings (for all integers k > 0). Further suppose that for all
values of k, ∆(Xk, Yk) ≥ 0.1. Show that Xk and Yk are not computationally indistinguishable.
You may use non-uniform PPT distinguishers. i.e., describe a family of distinguishers Dk, each of which runs in
time polynomial in k such that |Prx←Xk

[Dk(x) = 0] − Prx←Yk
[Dk(x) = 0]| ≥ ε(k) for some function ε that is

not negligible.
[Extra Credit] Can you show that Xk and Yk are in fact distinguishable by a uniform PPT distinguisher.

7. PRG and PRF. True or False (give reasons): [12 pts]

(a) If G : {0, 1}k → {0, 1}n is a PRG, then so is G′ : {0, 1}k+` → {0, 1}n+` defined as G′(x ◦ x′) = G(x) ◦ x′ where
x ∈ {0, 1}k, x′ ∈ {0, 1}`, and ◦ denotes concatenation.

(b) If F : {0, 1}k × {0, 1}m → {0, 1}n is a PRF, then so is:

i. F ′ : {0, 1}k × {0, 1}m+` → {0, 1}n+` defined as F ′(s;x ◦ x′) = F (s;x) ◦ x′ where s ∈ {0, 1}k, x ∈ {0, 1}m,
x′ ∈ {0, 1}`.

ii. F ′ : {0, 1}k+` × {0, 1}m → {0, 1}n+` defined as F ′(s ◦ s′;x) = F (s;x) ◦ s′ where s ∈ {0, 1}k, x ∈ {0, 1}m,
s′ ∈ {0, 1}`.

8. Block Ciphers [8 pts]

(a) Consider an adversary in the IND-CPA experiment against a symmetric key encryption algorithm implemented
using a block-cipher in the CTR mode. Describe a brute-force strategy for the adversary to recover the encryp-
tion key.

(b) A PetaFLOPS computer can execute 1015 floating point operations per second. If the adversary uses a 100
PetaFLOPS computer, and the block-cipher used is DES (which uses 56 bit keys), how long would your brute-
force strategy take on the average to recover the key? You may suppose that a single evaluation of a block-cipher
(DES or AES) takes 10 FLOPs.
What if the block-cipher used is AES with 128-bit keys?

(c) [Extra Credit] The triple-DES (3DES) is a block-cipher that uses the DES block-cipher three times, with three
different keys. The output of 3DES with key (K1,K2,K3), on input x is defined as 3DES(K1,K2,K3)(x) :=

DESK1(DES−1
K2

(DESK3(x))) where DESK and DES−1
K stand for the application of the DES block-cipher in the

forward and reverse directions. Since DES has 56 bit keys, 3DES has 168 bit keys.
As before, your goal is to design a key-recovery algorithm for an adversary in the IND-CPA experiment for
an SKE scheme using 3DES in CTR mode. Your algorithm can also invoke the DES block-cipher locally as a
black-box (in either forward or reverse directions) with keys of your own choice.
Can you devise a key-recovery algorithm which invokes the DES block-cipher computation “only” about 2112

times. How much memory does your algorithm use?

9. One-way, but every single bit of the preimage is predictable: [10 pts]

For any function f : {0, 1}∗ → {0, 1}∗, define a function gf as follows gf (x, S) = (f(x|S), S, x|S̄), where S is a
subset of {1, 2, . . . , |x|} of size b|x|/2c (represented as a bit vector of length |x| with b|x|/2c 1’s). Here x|S denotes
the string obtained by choosing only those bits from x whose indices are in S and x|S̄ is the string containing the
remaining bits.

(a) Show that if f is a one-way function, then so is gf . You may assume that f is length-preserving (i.e., |f(x)| = |x|
for all x).

(b) Show that no single bit of the input is a hard-core bit for gf .

3


