
Homework 2

Cryptography & Network Security
CS 406 : Spring 2021

Released: Mon Apr 5
Due: Fri Apr 23

Rabin OWF, CCA Secure PKE, Hash Functions, Signatures [Total 100 pts]

1. Square Root modulo N = PQ as hard as factorizing. Consider sampling two random k-bit prime
numbers P 6= Q, and setting N = PQ. Suppose we are given an algorithm A which, on being
given N and a random x ∈ QRN , returns y ∈ ZN such that with probability ε, y2 ≡ x (mod N).
(The probability is over the choice of P,Q, x and the randomness used by the algorithm A.) Give an
algorithm B which, on being given N as above, outputs the factors P,Q with probability at least ε/2
(the probability being over the choice of P,Q and the randomness of B). [15 pts]

Hint: Use the square-root finding algorithmA, to find “collisions” for the squaring function (use the Chinese
Remainder theorem to argue that this works). Then turn the collisions into elements a, b ∈ ZN such that
ab ≡ 0 (mod N). Then, show how to use such a pair to fatcorize N .

2. CCA Secure PKE in the Random Oracle Model [20 pts]

Suppose (KeyGen,Enc,Dec) is a CPA-secure PKE scheme. We shall write EncPK(m; r) to indicate en-
cryption of the message m using randomness r; suppose Enc requires r ← {0, 1}k (k, as always, being
the security parameter). Also, suppose H is a hash function modeled as a random oracle with k-bit
outputs.

Consider a new encryption scheme with the encryption algorithm defined as follows: Enc∗PK(m; r) =
(EncPK(m||r;H(r)), H(m||r)), where r ∈ {0, 1}k.

(a) What should the corresponding decryption algorithm Dec∗ be so that (KeyGen,Enc∗,Dec∗) is a
CCA-secure encryption scheme?

(b) Prove that with Dec∗ as you defined above, (KeyGen,Enc∗,Dec∗) is indeed a CCA-secure encryp-
tion scheme in the random oracle model. Flesh out the details of the proof as much as you can,
basing your arguments only on the CPA-security of the given scheme, and statistical properties.

Hint: You should convert a CCA-adversary A∗ for (KeyGen,Enc∗,Dec∗) into a CPA-adversary A for
(KeyGen,Enc,Dec). A will need to simulate the random oracle and the decryption oracle that A∗

expects. As such, A gets to see all random oracle queries that A∗ makes.

(c) Show that the scheme will not even be CPA secure if H(m||r) is replaced by H(m).

(d) Show that, for some choice of a CPA-secure scheme (KeyGen,Enc,Dec), the modified scheme will
not even be CPA secure if H(m||r) is replaced by H(r). [Extra Credit]

3. 2-Universal Hash Function. [15 pts]

For a prime number q and positive integers m,n, and R := Zn
q . Below, all probabilities refer to the

uniformly random choice of L← Zn×m
q , and all addition and multiplication of numbers are modulo q.
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(a) Suppose D = Zm
q \ {0m}. Prove that ∀x ∈ D,a ∈ R, PrL[Lx = a] = 1/|R|.

Hint: Fix an i s.t. xi 6= 0. Consider sampling L by picking the ith column last.

(b) Now suppose D = {0, 1}m \ {0m} (i.e., non-zero vectors with only 0 and 1 entries). Show that
∀x,y ∈ D s.t. x 6= y, a,b ∈ R, PrL[Lx = a,Ly = b] = 1/|R|2.

Hint: Argue that if x 6= y and x,y ∈ {0, 1}m there are at least two coordinates i, j restricted to which
x,y are linearly independent. Consider sampling L by picking these two columns last.

This shows that the family of functions H = {hL | L ∈ Zn×m
q }, where hL : D → R is defined

as hL(x) = Lx is a 2-universal hash function when D = {0, 1}m \{0m}. We can upgrade this
to a 2-universal hash function family for D = {0, 1}m (i.e., including the all-zero vector) by
considering hL,u(x) = Lx+ u over all (L,u) ∈ Zn×m

q × Zm
q .

4. Computational Hash Functions.

In this problem we consider hash functions on a finite domain (from {0, 1}n(k) to {0, 1}m(k)).

(a) Preimage collision resistance 6=⇒ Second-preimage collision resistance. SupposeH is preim-
age collision resistant. Modify H to H′ (possibly with a different domain), so that the latter re-
mains preimage collision resistant, but is not second-preimage collision resistant. (You must prove
that H′ has both these properties.) [8 pts]

(b) Second-preimage collision resistance 6=⇒ Preimage collision resistance. Given a CRHF H
which compresses by two bits (say from n bits to n−2 bits), construct a CRHFH′ that compresses
by one bit (say from n + 1 bits to n bits), such that the function f(h′, x) = (h′, h′(x)) (where
h′ ∈ H′) is not a OWF. (In both H and H′, collision-resistance holds when the hash function is
drawn uniformly at random from the family.) [12 pts]

Hint: Can you define h′ so that it includes (disjoint) copies of h and a copy of an easy to invert
one-to-one function? Why would this retain second-preimage collision resistance? Why would this
destroy preimage collision resistance?

(c) (Sufficiently Shrinking) CRHF implies OWF. Show that if H is a CRHF from n bits to n/2 bits,
then the function f(h, x) = (h, h(x)) is a OWF. [Extra Credit]

Hint: You may use the following intermediate steps. Below we say that “x has a collision under f” if
there exists an x′ 6= x such that f(x) = f(x′).

i. Let H be a CRHF and suppose that for every h ∈ H and every x, x has a collision under h. Show
that the function f(h, x) = (h, h(x)) is a OWF.

ii. Now, suppose that for each h ∈ H, all but a negligible fraction of x’s have a collision under h.
Show that the function f(h, x) = (h, h(x)) is a OWF.

iii. Finally, apply the above to the case of f : {0, 1}n → {0, 1}n/2.

5. Composition: UOWHF vs. CRHF

In this problem we consider hash functions which take arbitrarily long strings as inputs.

(a) Suppose H is a CRHF family. Then show that the hash function family H′ = {h2|h ∈ H} is also a
CRHF, where h2 is defined by h2(x) = h(h(x)). [5 pts]

(b) Suppose H0 is a UOWHF family. Use H0 to construct H, so that H is still a UOWHF, but the hash
function family H′ = {h2|h ∈ H} is not a UOWHF. [15 pts]
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6. Attacking a Signature Scheme [10 pts]

In this problem, we consider a seemingly minor modification of the Schnorr signature scheme, and
show that it can be broken.

Recall that, in the original scheme, the verification key is (G, g, Y ), where G is a prime-order group
with a generator g and Y = gy is a random group element, with y ← Z|G| being the signing key; the
signature on a message M is produced as Signy(M) = (e, s), where e = H(M ||gr) and s = r − ye, for
a random r ← Z|G|.
In the modfied scheme the messages belong to G, and e = H(M ||gr) is replaced by e = H(M · gr).
Give an existential forgery attack on this modified scheme (in the random oracle model).

7. Needham-Schroeder Protocol. [Extra Credit]

The Needham-Schroeder Public Key protocol was an early protocol (proposed in 1978) for “authenti-
cated key exchange,” using a public-key “encryption” scheme. (This was well before Goldwasser and
Micali had developed the CPA security notion for encryption.)

The protocol uses a trusted server, S, to help two parties exchange secret keys with each other. A priori,
there are no secrecy or authentication guarantees on the communication network, and the parties know
only each other’s identities and a public key of the server S. The server, S, knows public keys of all the
users. The goal of the protocol is that at the end A and B should agree on random nonces NA and NB

(chosen by A and B respectively).

The protocol is shown in Figure 1. It is described in terms of a public key “encryption” algorithm
Enc. It is a deterministic encryption scheme with the property that EncPK(Enc−1SK(M)) = M . If M is
sufficiently random, Enc−1SK(M) is assumed to behave like a (very weak) signature on M : it is infeasible
for an adversary who is given a random M to create the signature on M (note that this is weaker than
the notion of existential unforgeability, which is not satisfied by this scheme). PA,PB are Alice and
Bob’s public keys and SA, SB are their secret keys, respectively. Likewise, the server’s public and secret
keys are PS, SS.

A→ S : A,B (This is A requesting S to send B’s public-key)
S → A : Enc−1SS(PB,B) (A will use EncPS to recover B’s public key)
A→ B : EncPB(NA, A) (where NA is a fresh nonce, picked by A)
B → S : B,A (Now B requests S to send A’s public-key)
S → B : Enc−1SS(PA,A) (B will use EncPS to recover A’s public key)
B → A : EncPA(NB , NA) (where NB is a fresh nonce picked by B)
A→ B : EncPB(NB) (A and B agree on NA, NB at this point)

Figure 1: The Needham-Schroeder public-key protocol.

(a) There is a (famous) man-in-the-middle attack on this protocol, whereby a party E in the system
can set up a shared key with B, such that B thinks that she has shared that key with A. Describe
such an attack (without looking it up!). [Extra Credit]

Hint: The adversary can run a concurrent session with A.

(b) Suggest a (small) fix for the attack. [Extra Credit]

(c) If you were designing this protocol today, using public-key encryption and signatures, how would
you do it? [Extra Credit]
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