Security

In this course: Cryptography as used in network security
In this course: Cryptography as used in network security
In the News

“Properly implemented strong crypto systems are one of the few things that you can rely on.”

“... Unfortunately, endpoint security is so terrifically weak that [the adversary] can frequently find ways around it.”
What is Cryptography?

- It's all about controlling access to information
- A tool for enforcing policies on who can learn and/or influence information
- Do we know what we are talking about?
What is information?

Or rather the lack of it?

Uncertainty

Measured using Entropy

Borrowed from thermodynamics

An inherently “probabilistic” notion

Rudolf Clausius (1822-1888)

Ludwig Boltzmann (1844-1906)

Claude Shannon (1916-2001)
What is information?

Information Theory: ways to quantify information

Application 1: to study efficiency of communication (compression, error-correction)

Application 2: to study the possibility of secret communication

The latter turned out to be a relatively easy question! Secret communication possible only if (an equally long) secret key is shared ahead of time
Access to Information

A second look

Information at hand may still not be “accessible” if it is hard to work with it

Computation!

Shannon’s information may reduce uncertainty only for computationally all-powerful parties
Computational Complexity

- A systematic study of what computationally bounded parties can and cannot do
- A young and rich field
- Much known, much more unknown
- Much “believed”
- Basis of the Modern Theory of Cryptography
Compressed Secret-Keys

Impossible in the information-theoretic sense: a truly random string cannot be compressed

But possible against computationally bounded players: use pseudo-random strings!

Pseudo-random number generator

a.k.a. Stream Cipher

Generate a long string of random-looking bits from a short random seed
The Public-Key Revolution

“Non-Secret Encryption”

No a priori shared secrets

Instead, a public key. Anyone can create encryptions, only the creator of the key can decrypt!

Publicly verifiable digital signatures

Forms the backbone of today’s secure communication
Crypto-Mania

- Public-Key cryptography and beyond!
- Secret computation: collaboration among mutually distrusting parties
 - Compute on distributed data, without revealing their private information to each other
 - Compute on encrypted data
- And other fancy things... with sophisticated control over more complex “access” to information
- Do it all faster, better, more conveniently and more securely (or find out if one cannot). And also make sure we know what we are trying to do.
Turing Awards

For theoretical cryptographers:

- Manuel Blum (Turing Award ‘95)
- Andrew Yao (Turing Award ‘00)
- Shamir, Rivest & Adleman (Turing Award ‘02)
- Goldwasser & Micali (Turing Award ‘12)
- (Merkle) Hellman & Diffie (Turing Award ‘15)
Independence, Indistinguishability, Infeasibility, Zero-Knowledge, ...

One-way functions, collision-resistant hash functions, ...

Semantic security, non-malleability, existential unforgeability...

Leakage resilient crypto, Imperfect randomness, ...

RSA, elliptic curve groups, lattices, ...

PK Encryption, Signatures

Encryption, Authentication

Stream ciphers, Block ciphers

Pseudorandomness generators, PRF, ...

Random Oracle Model, Generic group model

SSL, TSL

Identity-Based Encryption

Secure Multi-Party Computation

Blind signatures, Mix-nets, DC-nets...

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model

Secure Multi-Party Computation

Signcryption

Concrete cryptanalysis (Birthday attacks, differential cryptanalysis, ...)

Blind signatures, Mix-nets, DC-nets...

DES, AES, SHA, HMAC

PK Encryption, Signatures

Random Oracle Model, Generic group model
In This Course
(Petting the Elephant)

- Fundamental notions: secrecy, infeasibility
- Secure communication

<table>
<thead>
<tr>
<th>Encryption</th>
<th>Shared-Key</th>
<th>Public-Key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SKE</td>
<td>PKE</td>
</tr>
<tr>
<td>Authentication</td>
<td>MAC</td>
<td>Signature</td>
</tr>
</tbody>
</table>

Mathematical content:
- Some Probability
- A little bit of Groups and Number Theory
- Definitions and proofs
Security involves many (f)actors other than crypto.

Crypto is a tool that **when correctly used** can help us greatly enhance (and understand) security.
Network Security

How to use cryptography to achieve security goals in a real-life scenario?

Several new issues:

- More complex (often informal/ill-specified) security goals
- Complexity due to support for extra efficiency/backward compatibility/new features
- Buggy implementations (software & hardware)
- Gap between abstract and real-life models: side-channels
- Human factors, trust, identity, current and legacy technology, ...
Cryptography is just one of the tools used in information security. Cryptography studies several problems which may not be of immediate use in information security, but is important in building its own foundations/in establishing links with other areas. Many powerful cryptographic tools remain underutilised in practice!
Course Logistics

Lectures

Recordings to be posted on Moodle

Grading:

- Mid/End-semester Exams (65%)
 - One during the mid-semester exam week
- ≈3 HW assignments (15%)
- Course project (20%)

“Theory” course: no significant programming requirement, but course project could be a programming project
Course Logistics

- Live and/or recorded lectures
- See Moodle
- Online forum: piazza.com/iitb.ac.in/spring2021/cs406
- Course webpage: see cse.iitb.ac.in/~mp/teach/
Puzzle #1

Alice and Bob hold secret numbers x and y in $\{0, \ldots, n\}$ resp.

Carol wants to learn $x+y$. Alice and Bob are OK with that.

But they don’t want Carol/each other to learn anything else!

i.e., Alice should learn nothing about y, nor Bob about x. Carol shouldn’t learn anything else about x,y “other than” $x+y$

Can they do it, just by talking to each other (using private channels between every pair of parties)?
Puzzle #2

Alice and Bob hold secret bits x and y

Carol wants to learn $x \land y$. Alice and Bob are OK with that.

But they don’t want Carol/each other to learn anything else!

i.e., Alice should learn nothing about y, nor Bob about x. Carol shouldn’t learn anything else about x,y “other than” $x \land y$

Can they do it, just by talking to each other (using private channels between every pair of parties)?