
Cryptography
and Network Security

Our first encounter with secrecy:
Secret-Sharing

Lecture 1

Secrecy

Cryptography is all about
“controlling access to
information”

Access to learning and/or
influencing information

One of the aspects of
access control is secrecy

A Game

A “dealer” and two “players” Alice and Bob

Dealer has a message m

She wants to “share” it among the two players so that
neither player by herself/himself learns anything about the
message, but together they can find it

Bad idea: If m is a two-bit message m1m2, give m1 to Alice
and m2 to Bob

Other ideas?

Sharing a bit
To share a bit m, Dealer picks a uniformly random bit b and gives
a := m⊕b to Alice and b to Bob

Bob learns nothing (b is a random bit)

Neither does Alice: for each possible value of m (0 or 1),
a is a random bit (0 w.p. ½, 1 w.p. ½)

Her view is independent of the message

Together they can recover m as a⊕b

Multiple bits can be shared independently: e.g., m1m2 = a1a2⊕b1b2

Note: any one share can be chosen before knowing the message
[why?]

m = 0 → (a,b) = (0,0) or (1,1)
m = 1 → (a,b) = (1,0) or (0,1)

Is the message m really secret?

Alice or Bob can correctly find the bit m with probability ½, by
randomly guessing

Worse, if they already know something about m, they can do
better (Note: we didn’t say m is uniformly random!)

But they could have done this without obtaining the shares

The shares didn’t leak any additional information to either party

Typical crypto goal: preserving secrecy

Secrecy

Goal: What Alice (or Bob) knows about the message after seeing
her share is the same as what she knew a priori

What she knows about the message a priori:
a probability distribution over the message

For each message m, Pr[msg=m]

What she knows after seeing her share (a.k.a. her view)

Say view is v. Then new distribution: Pr[msg=m | view=v]

Formally: ∀ possible v, ∀ m, Pr[msg=m | view = v] = Pr[msg = m]

i.e., view is independent of message

∀ v, ∀ m, Pr[view=v, msg=m] = Pr[view = v] · Pr[msg=m]

Preserving Secrecy

What Alice (or Bob) knows about the message after seeing her
share is the same as what she knew a priori:

∀ possible v, ∀ m, Pr[msg=m | view = v] = Pr[msg = m]

∀ v, ∀ m, Pr[view=v, msg=m] = Pr[view = v] · Pr[msg=m]

∀ v, ∀ possible m, Pr[view = v | msg = m] = Pr[view = v]

∀ v, ∀possible m, m’, Pr[view=v | msg=m] = Pr[view=v | msg=m’]

i.e., for all possible messages, the view
is distributed the same way

The view could be simulated without knowing the message

Important: can’t say Pr[msg=m | view=v] = Pr[msg=m’ | view=v]
(unless the prior is uniform)

Preserving Secrecy

Doesn’t involve
message distribution

at all!

Determined
by the scheme

Consider the following secret-sharing scheme

Message space = { buy, sell, wait }

buy → (00,00), (01,01), (10,10) or (11,11) w/ prob 1/4 each

sell → (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each

wait → (00,10), (01,11), (10,00), (11,01), (00,11), (01,10),

(10,01) or (11,00) w/ prob 1/8 each

Reconstruction: Let β1β2 = shareAlice ⊕ shareBob. Map β1β2 as

follows: 00 → buy, 01 → sell, 10 or 11 → wait

Is it secure?

Exercise

Secret-Sharing
More general secret-sharing

Allow more than two parties (how?)

Privileged subsets of parties should be able to reconstruct
the secret (not necessarily just the entire set of parties)

Very useful

Direct applications (distributed storage of data or keys)

Important component in other cryptographic constructions
Amplifying secrecy of various primitives
Secure multi-party computation
Attribute-Based Encryption
Leakage resilience ...

Threshold Secret-Sharing

(n,t)-secret-sharing

Divide a message m into n shares s1,...,sn, such that

any t shares are enough to reconstruct the secret

up to t-1 shares should have no information about the
secret

our previous example: (2,2) secret-sharing
e.g., (s1,…,st-1) has the same
distribution for every m in

the message space

Threshold Secret-Sharing
Construction: (n,n) secret-sharing

Message-space = share-space = G, a finite group
e.g. G = Z2 (group of bits, with xor as the group operation)

or, G = Z2 d (group of d-bit strings)

or, G = Zp (group of integers mod p)

Share(m):

Pick (s1,…,sn-1) uniformly at random from Gn-1

Let sn = - (s1 + ... + sn-1) + m

Reconstruct(s1,...,sn): m = s1 + ... + sn

Claim: This is an (n,n) secret-sharing scheme [Why?]

Additive

Secret-Sharing

 Additive Secret-Sharing: Proof
Share(m):

Pick (s1,…,sn-1) uniformly at random from Gn-1

Let sn = m - (s1 + ... + sn-1)

Claim: Upto n-1 shares give no information about m

Proof: Let T ⊆ {1,...,n}, |T| = n-1. We shall show that { si }i∈T is distributed
the same way (in fact, uniformly) irrespective of what m is.

For concreteness consider T = {2,...,n}. Fix any (n-1)-tuple of elements in
G, (g1,...,gn-1) ∈ Gn-1. To prove Pr[(s2,...,sn)=(g1,...,gn-1)] is same for all m.

Fix any m.

(s2,...,sn) = (g1,...,gn-1) ⇔ (s2,...,sn-1) = (g1,...,gn-2) and s1 = m - (g1+...+gn-1).

So Pr[(s2,...,sn) = (g1,...,gn-1)] = Pr[(s1,…,sn-1) = (a,g1,…,gn-2)] where
a := m - (g1+…+gn-1)

But Pr[(s1,…,sn-1) = (a,g1,...,gn-2)] = 1/|G|n-1, since (s1,...,sn-1) is picked
uniformly at random from Gn-1

Hence Pr[(s2,...,sn) = (g1,...,gn-1)] = 1/|G|n-1, irrespective of m. 											□

PR
OO

F

An Application

No colluding set of servers/clients will learn more than the
inputs/output of the clients in the collusion, provided that
at least one server stays out of the collusion

Gives a “private summation” protocol

Share

Add

Add

Clients with inputs

Client with output

Servers

Threshold Secret-Sharing
Construction: (n,2) secret-sharing

Message-space = share-space = F, a field (e.g. integers mod a prime)

Share(m): pick random r. Let si = r⋅ai + m (for i=1,...,n < |F|)

Reconstruct(si, sj): r = (si-sj)/(ai-aj); m = si - r⋅ai

Each si by itself is uniformly distributed,
irrespective of m [Why?]

“Geometric” interpretation

Sharing picks a random “line” y = f(x),
such that f(0) = m. Shares si = f(ai).

si is independent of m: exactly one line passing
through (ai,si) and (0,m’) for any secret m’

But can reconstruct the line from two points!
0 1 2 3 4 5 6

ai are n distinct,
non-zero field elements

Since ai-1 exists, exactly one
solution for r⋅ai+m=d, for

every value of d

(n,2) Secret-Sharing: Proof

Share(m): pick random r ← F. Let si = r⋅ai + m (for i=1,...,n < |F|)

Claim: Any one share gives no information about m

Proof: For any i∈{1,..,n} we shall show that si is distributed the same way
(in fact, uniformly) irrespective of what m is.

Consider any g∈F. We shall show that Pr[si=g] is independent of m.

Fix any m.

For any g ∈ F, si = g ⇔ r⋅ai + m = g ⇔ r = (g - m)⋅ai-1 (since ai≠0)

So, Pr[si=g] = Pr[r = (g - m)⋅ai-1] = 1/|F|, since r is chosen uniformly at
random 	□

PR
OO

F

Threshold Secret-Sharing
(n,t) secret-sharing in a field F

Generalizing the geometric/algebraic view: instead of lines, use
polynomials

Share(m): Pick a random degree t-1 polynomial f(X), such that
f(0) = m. Shares are si = f(ai).

Random polynomial with f(0) = m: c0 + c1X + c2X2 +...+ ct-1Xt-1
by picking c0 = m and c1,...,ct-1 at random.

Reconstruct(s1,...,st): Lagrange interpolation to find m = c0

Need t points to reconstruct the polynomial. Given t-1 points,
out of |F|t-1 polynomials passing through (0,m’) (for any m’)
there is exactly one that passes through the t-1 points

Shamir Secret-Sharing

Lagrange Interpolation

Given t distinct points on a degree t-1 polynomial (univariate, over
some field of more than t elements), reconstruct the entire
polynomial (i.e., find all t co-efficients)

t variables: c0,...,ct-1.
t equations: 1.c0 + ai.c1 + ai2.c2 + ... ait-1.ct-1 = si

A linear system: Wc=s, where W is a txt matrix with ith row,
Wi= (1 ai ai2 ... ait-1)

W (called the Vandermonde matrix) is invertible

c = W-1s

Today
Preserving secrecy: view is independent of the message

i.e., ∀ view, ∀ msg1,msg2, Pr[view | msg1] = Pr[view | msg2]

View does not give any additional information about the
message, than what was already known (the prior)

The view could be simulated without knowing the message

Holds even against unbounded computational power

Achieved in additive and threshold secret-sharing schemes

Such secrecy not always possible (e.g., no public-key encryption
against computationally unbounded adversaries)

