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Secrecy

Cryptography is all about 
“controlling access to 
information”

Access to learning and/or 
influencing information

One of the aspects of 
access control is secrecy



A Game

A “dealer” and two “players” Alice and Bob

Dealer has a message m

She wants to “share” it among the two players so that 
neither player by herself/himself learns anything about the 
message, but together they can find it

Bad idea: If m is a two-bit message m1m2, give m1 to Alice 
and m2 to Bob

Other ideas?



Sharing a bit
To share a bit m, Dealer picks a uniformly random bit b and gives 
a := m⊕b to Alice and b to Bob

Bob learns nothing (b is a random bit)

Neither does Alice: for each possible value of m (0 or 1),  
a is a random bit (0 w.p. ½, 1 w.p. ½)

Her view is independent of the message

Together they can recover m as a⊕b

Multiple bits can be shared independently: e.g., m1m2 = a1a2⊕b1b2

Note: any one share can be chosen before knowing the message 
[why?]

m = 0 → (a,b) = (0,0) or (1,1)
m = 1  → (a,b) = (1,0) or (0,1)



Is the message m really secret?

Alice or Bob can correctly find the bit m with probability ½, by 
randomly guessing

Worse, if they already know something about m, they can do 
better (Note: we didn’t say m is uniformly random!)

But they could have done this without obtaining the shares

The shares didn’t leak any additional information to either party

Typical crypto goal: preserving secrecy

Secrecy



Goal: What Alice (or Bob) knows about the message after seeing 
her share is the same as what she knew a priori

What she knows about the message a priori:  
a probability distribution over the message

For each message m, Pr[msg=m]

What she knows after seeing her share (a.k.a. her view)

Say view is v. Then new distribution: Pr[msg=m | view=v]

Formally: ∀ possible v, ∀ m, Pr[msg=m | view = v] = Pr[msg = m]

i.e., view is independent of message

∀ v, ∀ m, Pr[view=v, msg=m] = Pr[view = v] · Pr[msg=m]

Preserving Secrecy



What Alice (or Bob) knows about the message after seeing her 
share is the same as what she knew a priori:

∀ possible v, ∀ m, Pr[msg=m | view = v] = Pr[msg = m]

∀ v, ∀ m, Pr[view=v, msg=m] = Pr[view = v] · Pr[msg=m]

∀ v, ∀ possible m, Pr[view = v | msg = m] = Pr[view = v]

∀ v, ∀possible m, m’, Pr[ view=v | msg=m ] = Pr[ view=v | msg=m’ ]

i.e., for all possible messages, the view  
is distributed the same way

The view could be simulated without knowing the message

Important: can’t say Pr[msg=m | view=v] = Pr[msg=m’ | view=v] 
(unless the prior is uniform)

Preserving Secrecy

Doesn’t involve 
message distribution 

at all!

Determined 
by the scheme



Consider the following secret-sharing scheme

Message space = { buy, sell, wait }

buy  → (00,00), (01,01), (10,10) or (11,11) w/ prob 1/4 each

sell  → (00,01), (01,00), (10,11) or (11,10) w/ prob 1/4 each

wait → (00,10), (01,11), (10,00), (11,01), (00,11), (01,10), 

(10,01) or (11,00) w/ prob 1/8 each

Reconstruction: Let β1β2 = shareAlice ⊕ shareBob. Map β1β2 as 

follows: 00 → buy, 01 → sell, 10 or 11 → wait

Is it secure?

Exercise



Secret-Sharing
More general secret-sharing

Allow more than two parties (how?)

Privileged subsets of parties should be able to reconstruct 
the secret (not necessarily just the entire set of parties)

Very useful

Direct applications (distributed storage of data or keys)

Important component in other cryptographic constructions
Amplifying secrecy of various primitives
Secure multi-party computation
Attribute-Based Encryption
Leakage resilience ...



Threshold Secret-Sharing

(n,t)-secret-sharing

Divide a message m into n shares s1,...,sn, such that 

any t shares are enough to reconstruct the secret

up to t-1 shares should have no information about the 
secret

our previous example: (2,2) secret-sharing
e.g., (s1,…,st-1) has the same 
distribution for every m in  

the message space



Threshold Secret-Sharing
Construction: (n,n) secret-sharing

Message-space = share-space = G, a finite group
e.g. G = Z2 (group of bits, with xor as the group operation)

or, G = Z2 d (group of d-bit strings)

or, G = Zp (group of integers mod p)

Share(m):

Pick (s1,…,sn-1) uniformly at random from Gn-1

Let sn = - (s1 + ... + sn-1) + m

Reconstruct(s1,...,sn): m = s1 + ... + sn

Claim: This is an (n,n) secret-sharing scheme [Why?]

Additive 

Secret-Sharing



 Additive Secret-Sharing: Proof
Share(m):

Pick (s1,…,sn-1) uniformly at random from Gn-1

Let sn = m - (s1 + ... + sn-1) 

Claim: Upto n-1 shares give no information about m

Proof:  Let T ⊆ {1,...,n}, |T| = n-1. We shall show that { si }i∈T is distributed 
the same way (in fact, uniformly) irrespective of what m is.

For concreteness consider T = {2,...,n}. Fix any (n-1)-tuple of elements in 
G, (g1,...,gn-1) ∈ Gn-1. To prove Pr[ (s2,...,sn)=(g1,...,gn-1) ] is same for all m.

Fix any m.

(s2,...,sn) = (g1,...,gn-1) ⇔ (s2,...,sn-1) = (g1,...,gn-2) and s1 = m - (g1+...+gn-1).

So Pr[ (s2,...,sn) = (g1,...,gn-1) ] = Pr[ (s1,…,sn-1) = (a,g1,…,gn-2) ] where  
a := m - (g1+…+gn-1)

But Pr[(s1,…,sn-1) = (a,g1,...,gn-2)] = 1/|G|n-1, since (s1,...,sn-1) is picked 
uniformly at random from Gn-1

Hence Pr[ (s2,...,sn) = (g1,...,gn-1) ] = 1/|G|n-1, irrespective of m.  											□

PR
OO

F



An Application

No colluding set of servers/clients will learn more than the 
inputs/output of the clients in the collusion, provided that 
at least one server stays out of the collusion

Gives a “private summation” protocol

Share

Add

Add

Clients with inputs

Client with output

Servers



Threshold Secret-Sharing
Construction: (n,2) secret-sharing

Message-space = share-space = F, a field (e.g. integers mod a prime)

Share(m): pick random r. Let si = r⋅ai + m (for i=1,...,n < |F|)

Reconstruct(si, sj): r = (si-sj)/(ai-aj); m = si - r⋅ai

Each si by itself is uniformly distributed,  
irrespective of m  [Why?]

“Geometric” interpretation

Sharing picks a random “line” y = f(x), 
such that f(0) = m. Shares si = f(ai). 

si is independent of m: exactly one line passing 
through (ai,si) and (0,m’) for any secret m’

But can reconstruct the line from two points!
0 1 2 3 4 5 6

ai are n distinct,  
non-zero field elements

Since ai-1 exists, exactly one 
solution for r⋅ai+m=d, for 

every value of d



(n,2) Secret-Sharing: Proof

Share(m): pick random r ← F. Let si = r⋅ai + m (for i=1,...,n < |F|)

Claim: Any one share gives no information about m

Proof:  For any i∈{1,..,n} we shall show that si is distributed the same way 
(in fact, uniformly) irrespective of what m is.

Consider any g∈F. We shall show that Pr[ si=g ] is independent of m.

Fix any m.

For any g ∈ F,  si = g ⇔  r⋅ai + m = g ⇔ r = (g - m)⋅ai-1 (since ai≠0)

So, Pr[ si=g ] = Pr[ r = (g - m)⋅ai-1 ] = 1/|F|, since r is chosen uniformly at 
random                                                                           	□

PR
OO

F



Threshold Secret-Sharing
(n,t) secret-sharing in a field F

Generalizing the geometric/algebraic view: instead of lines, use 
polynomials

Share(m): Pick a random degree t-1 polynomial f(X), such that 
f(0) = m. Shares are si = f(ai).

Random polynomial with f(0) = m: c0 + c1X + c2X2 +...+ ct-1Xt-1 
by picking c0 = m and c1,...,ct-1 at random.

Reconstruct(s1,...,st): Lagrange interpolation to find m = c0 

Need t points to reconstruct the polynomial. Given t-1 points, 
out of |F|t-1 polynomials passing through (0,m’) (for any m’) 
there is exactly one that passes through the t-1 points

Shamir Secret-Sharing



Lagrange Interpolation

Given t distinct points on a degree t-1 polynomial (univariate, over 
some field of more than t elements), reconstruct the entire 
polynomial (i.e., find all t co-efficients)

t variables: c0,...,ct-1.  
t equations: 1.c0 + ai.c1 + ai2.c2 + ... ait-1.ct-1 = si

A linear system: Wc=s, where W is a txt matrix with ith row, 
Wi= (1 ai ai2 ... ait-1)

W (called the Vandermonde matrix) is invertible

c = W-1s



Today
Preserving secrecy: view is independent of the message

i.e., ∀ view, ∀ msg1,msg2, Pr[view | msg1] = Pr[view | msg2]

View does not give any additional information about the 
message, than what was already known (the prior)

The view could be simulated without knowing the message

Holds even against unbounded computational power

Achieved in additive and threshold secret-sharing schemes

Such secrecy not always possible (e.g., no public-key encryption 
against computationally unbounded adversaries)


