Defining Encryption (ctd.)

Lecture 3
SIM & IND security

Beyond One-Time: CPA security
Computational Indistinguishability



o Perfect secrecy: vm, m' e &7

d {Enc(m,K)}K%KeyGen = {EnC(mI,K)}KeKeyGen

@ Distribution of the ciphertext Jis defined
by the randomness in the key

@ In addition, require correctness
@ vm, K, Dec(Enc(mK) K) =m

o E.g. One-time pad: 77 = %= C = {0,1}» and
Enc(m,K) = maK, Dec(c,K) = caK

@ More generally 77 = %= C= ¢ (a finite group)

and Enc(m,K) = m+K, Dec(c,K) = c-K

A (2,2)-secret-sharing scheme:
K and Enc(m,K) are shares of m

Assuming K uniformly drawn from %

Pr[ Enc(a,K)=x ] = Y,
Pr[ Enc(a,K)=y ] = ¥,
Pr[ Enc(a,K)=z ] = Y.

Same for Enc(b,K).




yOnefime Encryption

IND-Onetime Security f;:':i'é’jr
@ IND-Onetime Experiment o secrecy
Key/\ wmmuy A
& Experiment picks a random bit b. It
also runs KeyGen to get a key K Enc(mp,K)
@ Adversary sends two messages mo, (m, v
m; to the experiment .
@ Experiment replies with Enc(ms,K)
Mo, My
@ Adversary returns a guess b’ lb’
4 D
@ Experiments outputs 1 iff b'=b b {01}
/= ?
@ IND-Onetime secure if for every N\ I y
adversary, Pr[b’=b] = 1/2 } Yes/No



yOnehme Encryptior cqien «

perfect secrecy

SIM-Onetime Securlfy + correctness

@ Class of environments which send only one message
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Security of Encryption

@ Perfect secrecy is too strong for multiple messages (though, as
we shall see later, too weak in some other respects)

® Requires keys as long as the messages

@ Relax the requirement by restricting to computationally
bounded adversaries (and environments)

@ Coming up: Formalizing notions of “computational” security (as
opposed to perfect/statistical security)

@ Then, security definitions used for encryption of multiple
messages



Symmeftric-Key Encryption

The Syntax
@ Shared-key (Private-key) Encryption

@ Key Generation: Randomized

@ K < %, uniformly randomly drawn from the key-space
(or according to a key-distribution)

@ Encryption: Randomized

@ Enc: 7 x% xR —C. During encryption a fresh random
string will be chosen uniformly at random from ®

@ Decryption: Deterministic

® Dec: CxXK— M



Symmetric-Key Encryption

Security Definitions

Security of Information Game-based Simulation-based
Encryption theoretic

One-time

Multi-msg

Active/multi-msg

@ CPA: Chosen Plaintext Attack
@ The adversary can influence/choose the messages being encrypted

@ Note: One-time security also allowed this, but for only one message



Symmetric-Key Encryption
SIM-CPA Security

® Same as SIM-onetime security, but not restricted to environments
which send only one message. Also, now all entities “efficient.”
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Symmetric-Key Encryption

IND-CPA Security IND-CPA +
& Experiment picks a random bit b. It also correctness
runs KeyGen to get a key K w equivalent fo

e WEhRD P SIM-CPA

@ For as long as Adversary wants

@ Adv sends two messages mo, m;
to the experiment

@ Expt returns Enc(my,K) to the

adversary Fo.mi
bl
@ Adversary returns a guess b’ m
@ Experiment outputs 1 iff b'=b [ b;{g;l} J

® IND-CPA secure if for all “efficient”
adversaries Pr[b’=b] = 1/2 lYeS/ No



Almost Perfect

@ For multi-message schemes we relaxed the "perfect” simulation
requirement to IDEAL = REAL

@ In particular, we settle for “almost perfect” correctness
@ Recall perfect correctness

@V m, ereKeyGenl Enc [ DeC( EnC(m,K), K) =m ] - ].
@ Almost perfect correctness: a.k.a. Statistical correctness
@V m, PrKeKeyGen, Enc [ D€C( EnC(m,K), K) =m ] = 1

® But what is = ?



Feasible Computation

@ In analyzing complexity of algorithms: Rate at which
computational complexity grows with input size

@ e.g. Can do sorting in O(n log n)

@ Only the rough rate considered

@ Exact time depends on the technology —

@ Real question: Do we scale well? How
much more computation will be needed
as the instances of the problem get larger.

@ “Polynomial time” (O(n), O(n2), O(n3), ...)

considered feasible
Log Poly I Exp



Infeasible Computation

@ "Super-Polynomial time” considered infeasible

@ e.g. 21, 2+n, nlogn)

@ i.e., as n grows, quickly becomes “infeasibly large”
@ Can we make breaking security infeasible for Eve?

@ What is n (that can grow)?

@ Message size?

® We need security even if sending only one bit!



Security Parameter

® A parameter that is part of the encryption scheme
@ Not related fo message size
@ A Kknob that can be used to set the security level
@ Will denote by k

@ Security guarantees are given asymptotically as a function of
the security parameter




Feasible and Negligible

® We want to tolerate Eves who have a running time bounded by
some polynomial in K

@ Eve could toss coins: Probabilistic Polynomial-Time (PPT)

@ It is better that we allow Eve high polynomial times too (we'll
typically tolerate some super-polynomial time for Eve)

@ But algorithms for Alice/Bob better be very efficient
@ Eve could be non-uniform: a different strategy for each k

@ Such an Eve should have only a “negligible” advantage (or, should
cause at most a “negligible” difference in the behaviour of the
environment in the SIM definition)

@ What is negligible?



Negligibly Small
@ A negligible quantity: As we turn the knob the quantity should

“decrease extremely fast”
@ Negligible: decreases as 1/superpoly(k)

@ i.e., faster than 1/poly(k) for every polynomial

@ e.g.: 2k, 2-7k, k-(logk),

@ Formally: T negligible if vc>0 3ko vk>ko T(k) < 1/ke
@ So that negl(k) X poly(k) = negl’(k)

® Needed, because Eve can often increase advantage
polynomially by spending that much more time/by seeing
that many more messages



Interpreting Asympt

otics
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Symmetric-Key Encryption
SIM-CPA Security

w -w
Key/
Enc

A# ﬁ Key/
.Q Dec
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\* 3 PPT E s.t. >
I v PPT & 1

IDEAL a{' REAL
| Pr[IDEAL=0] - Pr[REAL=0] |
IDEAL is negligible REAL



Symmetric-Key Encryption

IND-CPA Security IND-CPA +
@ Experiment picks a random bit b. It also correctness
runs KeyGen to get a key K w equivalent fo

e WEhRD P SIM-CPA

@ For as long as Adversary wants

@ Adv sends two messages mo, m;
to the experiment

@ Expt returns Enc(my,K) to the
adversary

bl
@ Adversary returns a guess b’ m
@ Experiment outputs 1 iff b'=b /ppT [ b<—{0,1} J

b'=b?
® IND-CPA secure if for all “efficient”

adversaries Pr[b’=b] = 1/2 | Pr[b’=b] - 1/2 | lYeS/ No
s T is negligible




Indistinguishability

@ Security definitions often refer fo indistinguishability of two
distributions: e.g., REAL vs. IDEAL, or Enc(mo) vs. Enc(m)

@ By a distinguisher who outputfs a single bit
@ 3 levels of indistinguishability
@ Perfect: the two distributions are idenftical

@ Computational: for all PPT distinguishers, probability of

the output bit being 1 is only negligibly different in the
two cases

@ Statistical: the two distributions are “statistically close”

@ Hard to distinguish, irrespective of the computational
power of the distinguisher



Statistical Indistinguishability

@ Given two distributions A and B over the same sample space, how well
can a (computationally unbounded) test T distinguish between them?

@ T is given a single sample drawn from A or B

@ How differently does it behave in the two cases?

Statistical Difference (Distance)
0 A(AB) := maxt | Pryeal[T(x)=1] - Prxs[T(x)=1] | { or Total Variation Distance }

@ Two distribution ensembles {Axjk, {Bkjk are statistically indistinguishable
from each other if A(Ak,Bk) is negligible in k

Probability

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec



Next

@ Constructing (CPA-secure) SKE schemes
@ Pseudorandomness Generator (PRG)
@ One-Way Functions (& OW Permutations)

@ OWP — PRG — (CPA-secure) SKE



