
Defining Encryption (ctd.)
Lecture 3


SIM & IND security


Beyond One-Time: CPA security

Computational Indistinguishability
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Onetime Encryption

Perfect secrecy: ∀ m, m’ ∈ M


{Enc(m,K)}K←KeyGen = {Enc(m’,K)}K←KeyGen


Distribution of the ciphertext is defined 
by the randomness in the key


In addition, require correctness


∀ m, K,   Dec( Enc(m,K), K) = m


E.g. One-time pad: M = K = C  = {0,1}n and      

Enc(m,K) = m⊕K, Dec(c,K) = c⊕K


More generally M = K = C = G (a finite group) 

and Enc(m,K) = m+K, Dec(c,K) = c-K

Distribution of the ciphertext

Assuming K uniformly drawn from K 


Pr[ Enc(a,K)=x ] = ¼,  
Pr[ Enc(a,K)=y ] = ½,  
Pr[ Enc(a,K)=z ] = ¼.

______________ 
Same for Enc(b,K).

A (2,2)-secret-sharing scheme: 
K and Enc(m,K) are shares of m 

Rec
all



IND-Onetime Experiment


Experiment picks a random bit b. It 
also runs KeyGen to get a key K


Adversary sends two messages m0, 
m1 to the experiment


Experiment replies with Enc(mb,K)


Adversary returns a guess b’


Experiments outputs 1 iff b’=b


IND-Onetime secure if for every 
adversary, Pr[b’=b] = 1/2

Key/
Enc

.


b←{0,1}

b’=b?

m0,m1
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Enc(mb,K)

b’

Yes/No

Equivalent 
to perfect 
secrecy

IND-Onetime Security

Onetime EncryptionRec
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SIM-Onetime 
secure if: 

∀    

∃      s.t.

∀      


Key/
Enc

Key/
Dec

Env

Send Recv

Env

REALIDEAL

Class of environments which send only one message

SIM-Onetime Security

Onetime Encryption

IDEAL=REAL

Equivalent to 
perfect secrecy

+ correctness
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Security of Encryption

Perfect secrecy is too strong for multiple messages (though, as 
we shall see later, too weak in some other respects)


Requires keys as long as the messages


Relax the requirement by restricting to computationally 
bounded adversaries (and environments)


Coming up: Formalizing notions of “computational” security (as 
opposed to perfect/statistical security)


Then, security definitions used for encryption of multiple 
messages



Shared-key (Private-key) Encryption


Key Generation: Randomized


K ← K , uniformly randomly drawn from the key-space 

(or according to a key-distribution)


Encryption: Randomized


Enc: M ×K ×R →C. During encryption a fresh random 

string will be chosen uniformly at random from R


Decryption: Deterministic


Dec: C ×K → M 

The Syntax

Symmetric-Key Encryption



Security Definitions

Symmetric-Key Encryption

Security of 
Encryption

Information 
theoretic

Game-based Simulation-based 

One-time
Perfect secrecy & 
Perfect correctness

IND-Onetime & 
Perfect correctness

SIM-Onetime

Multi-msg IND-CPA & 
correctness

SIM-CPA

Active/multi-msg IND-CCA & 
correctness

SIM-CCA

≡ ≡

≡

≡

today

CPA: Chosen Plaintext Attack


The adversary can influence/choose the messages being encrypted


Note: One-time security also allowed this, but for only one message



SIM-CPA 
secure if: 

∀    

∃      s.t.

∀      


Key/
Enc

Key/
Dec

Env

Send Recv

Env

REALIDEAL

SIM-CPA Security
Same as SIM-onetime security, but not restricted to environments 
which send only one message. Also, now all entities “efficient.”

IDEAL ≈ REAL

Symmetric-Key Encryption

Later



b

Experiment picks a random bit b. It also 
runs KeyGen to get a key K


For as long as Adversary wants


Adv sends two messages m0, m1  
to the experiment


Expt returns Enc(mb,K) to the 
adversary


Adversary returns a guess b’


Experiment outputs 1 iff b’=b


IND-CPA secure if for all “efficient” 
adversaries  Pr[b’=b] ≈ 1/2

Key/
Enc

b←{0,1}

b’=b?

m0,m1

mb

Enc(mb,K)

b’

Yes/No

IND-CPA Security
Symmetric-Key Encryption

IND-CPA + 
~correctness 

equivalent to 

SIM-CPA



Almost Perfect
For multi-message schemes we relaxed the “perfect” simulation 
requirement to IDEAL ≈ REAL


In particular, we settle for “almost perfect” correctness


Recall perfect correctness


∀ m, PrK←KeyGen, Enc [ Dec( Enc(m,K), K) = m ] = 1


Almost perfect correctness: a.k.a. Statistical correctness


∀ m, PrK←KeyGen, Enc [ Dec( Enc(m,K), K) = m ] ≈ 1


But what is ≈ ?



Feasible Computation
In analyzing complexity of algorithms: Rate at which 
computational complexity grows with input size


e.g. Can do sorting in O(n log n)


Only the rough rate considered


Exact time depends on the technology


Real question: Do we scale well? How 
much more computation will be needed 
as the instances of the problem get larger.


“Polynomial time” (O(n), O(n2), O(n3), ...) 
considered feasible

Log Poly Exp



Infeasible Computation

“Super-Polynomial time” considered infeasible


e.g. 2n, 2√n, nlog(n)


i.e., as n grows, quickly becomes “infeasibly large”


Can we make breaking security infeasible for Eve?


What is n (that can grow)?


Message size?


We need security even if sending only one bit!



Security Parameter

A parameter that is part of the encryption scheme


Not related to message size


A knob that can be used to set the security level


Will denote by k


Security guarantees are given asymptotically as a function of 
the security parameter



Feasible and Negligible
We want to tolerate Eves who have a running time bounded by 
some polynomial in k


Eve could toss coins: Probabilistic Polynomial-Time (PPT)


It is better that we allow Eve high polynomial times too (we’ll 
typically tolerate some super-polynomial time for Eve)


But algorithms for Alice/Bob better be very efficient


Eve could be non-uniform: a different strategy for each k


Such an Eve should have only a “negligible” advantage (or, should 
cause at most a “negligible” difference in the behaviour of the 
environment in the SIM definition)


What is negligible?



Negligibly Small
A negligible quantity: As we turn the knob the quantity should 
“decrease extremely fast”


Negligible: decreases as 1/superpoly(k)


i.e., faster than 1/poly(k) for every polynomial


e.g.: 2-k, 2-√k, k-(log k).


Formally: T negligible if ∀c>0 ∃k0 ∀k>k0  T(k) < 1/kc 


So that negl(k) ⨉ poly(k) = negl’(k)


Needed, because Eve can often increase advantage 
polynomially by spending that much more time/by seeing 
that many more messages
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Interpreting Asymptotics

Security 

parameter

Time to 

tolerate

Admissible 
advantage

If adversary 

runs for less 

than this long

Then its advantage 
is no more than this

set k 
here
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and this to be 
negligible



SIM-CPA 
secure if: 

∀ PPT    

∃ PPT     s.t.

∀ PPT     


Key/
Enc

Key/
Dec

Env

Send Recv

Env

REALIDEAL

SIM-CPA Security

IDEAL ≈ REAL

Symmetric-Key Encryption

| Pr[IDEAL=0] - Pr[REAL=0] | 
is negligible



b

Experiment picks a random bit b. It also 
runs KeyGen to get a key K


For as long as Adversary wants


Adv sends two messages m0, m1  
to the experiment


Expt returns Enc(mb,K) to the 
adversary


Adversary returns a guess b’


Experiment outputs 1 iff b’=b


IND-CPA secure if for all “efficient” 
adversaries  Pr[b’=b] ≈ 1/2

Key/
Enc

b←{0,1}

b’=b?

m0,m1

mb

Enc(mb,K)

b’

Yes/No

IND-CPA Security
Symmetric-Key Encryption

IND-CPA + 
~correctness 

equivalent to 

SIM-CPA

| Pr[b’=b] - 1/2 | 
 is negligible

PPT



Indistinguishability
Security definitions often refer to indistinguishability of two 
distributions: e.g., REAL vs. IDEAL, or Enc(m0) vs. Enc(m1)


By a distinguisher who outputs a single bit


3 levels of indistinguishability


Perfect: the two distributions are identical


Computational: for all PPT distinguishers, probability of 
the output bit being 1 is only negligibly different in the 
two cases


Statistical: the two distributions are “statistically close”


Hard to distinguish, irrespective of the computational 
power of the distinguisher
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Statistical Indistinguishability
Given two distributions A and B over the same sample space, how  well 
can a (computationally unbounded) test T distinguish between them?


T is given a single sample drawn from A or B


How differently does it behave in the two cases?


Δ(A,B) := max T | Prx←A[T(x)=1] - Prx←B[T(x)=1] |


Two distribution ensembles {Ak}k, {Bk}k are statistically indistinguishable 
from each other if Δ(Ak,Bk) is negligible in k
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Statistical Difference (Distance) 
or Total Variation Distance



Next

Constructing (CPA-secure) SKE schemes


Pseudorandomness Generator (PRG)


One-Way Functions (& OW Permutations)


OWP → PRG → (CPA-secure) SKE


