
Defining Encryption (ctd.)
Lecture 3

SIM & IND security

Beyond One-Time: CPA security

Computational Indistinguishability

Perfect Secrecy

0 1 2 3

a x y y z

b y x z y

M

K

Onetime Encryption

Perfect secrecy: ∀ m, m’ ∈ M

{Enc(m,K)}K←KeyGen = {Enc(m’,K)}K←KeyGen

Distribution of the ciphertext is defined
by the randomness in the key

In addition, require correctness

∀ m, K, Dec(Enc(m,K), K) = m

E.g. One-time pad: M = K = C = {0,1}n and

Enc(m,K) = m⊕K, Dec(c,K) = c⊕K

More generally M = K = C = G (a finite group)

and Enc(m,K) = m+K, Dec(c,K) = c-K

Distribution of the ciphertext

Assuming K uniformly drawn from K

Pr[Enc(a,K)=x] = ¼,
Pr[Enc(a,K)=y] = ½,
Pr[Enc(a,K)=z] = ¼.

Same for Enc(b,K).

A (2,2)-secret-sharing scheme:
K and Enc(m,K) are shares of m

Rec
all

IND-Onetime Experiment

Experiment picks a random bit b. It
also runs KeyGen to get a key K

Adversary sends two messages m0,
m1 to the experiment

Experiment replies with Enc(mb,K)

Adversary returns a guess b’

Experiments outputs 1 iff b’=b

IND-Onetime secure if for every
adversary, Pr[b’=b] = 1/2

Key/
Enc

.

b←{0,1}

b’=b?

m0,m1

mb

Enc(mb,K)

b’

Yes/No

Equivalent
to perfect
secrecy

IND-Onetime Security

Onetime EncryptionRec
all

SIM-Onetime
secure if:

∀

∃ s.t.

∀

Key/
Enc

Key/
Dec

Env

Send Recv

Env

REALIDEAL

Class of environments which send only one message

SIM-Onetime Security

Onetime Encryption

IDEAL=REAL

Equivalent to
perfect secrecy

+ correctness

Rec
all

Security of Encryption

Perfect secrecy is too strong for multiple messages (though, as
we shall see later, too weak in some other respects)

Requires keys as long as the messages

Relax the requirement by restricting to computationally
bounded adversaries (and environments)

Coming up: Formalizing notions of “computational” security (as
opposed to perfect/statistical security)

Then, security definitions used for encryption of multiple
messages

Shared-key (Private-key) Encryption

Key Generation: Randomized

K ← K , uniformly randomly drawn from the key-space

(or according to a key-distribution)

Encryption: Randomized

Enc: M ×K ×R →C. During encryption a fresh random

string will be chosen uniformly at random from R

Decryption: Deterministic

Dec: C ×K → M

The Syntax

Symmetric-Key Encryption

Security Definitions

Symmetric-Key Encryption

Security of
Encryption

Information
theoretic

Game-based Simulation-based

One-time
Perfect secrecy &
Perfect correctness

IND-Onetime &
Perfect correctness

SIM-Onetime

Multi-msg IND-CPA &
correctness

SIM-CPA

Active/multi-msg IND-CCA &
correctness

SIM-CCA

≡ ≡

≡

≡

today

CPA: Chosen Plaintext Attack

The adversary can influence/choose the messages being encrypted

Note: One-time security also allowed this, but for only one message

SIM-CPA
secure if:

∀

∃ s.t.

∀

Key/
Enc

Key/
Dec

Env

Send Recv

Env

REALIDEAL

SIM-CPA Security
Same as SIM-onetime security, but not restricted to environments
which send only one message. Also, now all entities “efficient.”

IDEAL ≈ REAL

Symmetric-Key Encryption

Later

b

Experiment picks a random bit b. It also
runs KeyGen to get a key K

For as long as Adversary wants

Adv sends two messages m0, m1
to the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiment outputs 1 iff b’=b

IND-CPA secure if for all “efficient”
adversaries Pr[b’=b] ≈ 1/2

Key/
Enc

b←{0,1}

b’=b?

m0,m1

mb

Enc(mb,K)

b’

Yes/No

IND-CPA Security
Symmetric-Key Encryption

IND-CPA +
~correctness

equivalent to

SIM-CPA

Almost Perfect
For multi-message schemes we relaxed the “perfect” simulation
requirement to IDEAL ≈ REAL

In particular, we settle for “almost perfect” correctness

Recall perfect correctness

∀ m, PrK←KeyGen, Enc [Dec(Enc(m,K), K) = m] = 1

Almost perfect correctness: a.k.a. Statistical correctness

∀ m, PrK←KeyGen, Enc [Dec(Enc(m,K), K) = m] ≈ 1

But what is ≈ ?

Feasible Computation
In analyzing complexity of algorithms: Rate at which
computational complexity grows with input size

e.g. Can do sorting in O(n log n)

Only the rough rate considered

Exact time depends on the technology

Real question: Do we scale well? How
much more computation will be needed
as the instances of the problem get larger.

“Polynomial time” (O(n), O(n2), O(n3), ...)
considered feasible

Log Poly Exp

Infeasible Computation

“Super-Polynomial time” considered infeasible

e.g. 2n, 2√n, nlog(n)

i.e., as n grows, quickly becomes “infeasibly large”

Can we make breaking security infeasible for Eve?

What is n (that can grow)?

Message size?

We need security even if sending only one bit!

Security Parameter

A parameter that is part of the encryption scheme

Not related to message size

A knob that can be used to set the security level

Will denote by k

Security guarantees are given asymptotically as a function of
the security parameter

Feasible and Negligible
We want to tolerate Eves who have a running time bounded by
some polynomial in k

Eve could toss coins: Probabilistic Polynomial-Time (PPT)

It is better that we allow Eve high polynomial times too (we’ll
typically tolerate some super-polynomial time for Eve)

But algorithms for Alice/Bob better be very efficient

Eve could be non-uniform: a different strategy for each k

Such an Eve should have only a “negligible” advantage (or, should
cause at most a “negligible” difference in the behaviour of the
environment in the SIM definition)

What is negligible?

Negligibly Small
A negligible quantity: As we turn the knob the quantity should
“decrease extremely fast”

Negligible: decreases as 1/superpoly(k)

i.e., faster than 1/poly(k) for every polynomial

e.g.: 2-k, 2-√k, k-(log k).

Formally: T negligible if ∀c>0 ∃k0 ∀k>k0 T(k) < 1/kc

So that negl(k) ⨉ poly(k) = negl’(k)

Needed, because Eve can often increase advantage
polynomially by spending that much more time/by seeing
that many more messages

A
dv

an
ta

ge

Interpreting Asymptotics

Security

parameter

Time to

tolerate

Admissible
advantage

If adversary

runs for less

than this long

Then its advantage
is no more than this

set k
here

 T
im

e
st

ep
s

Would like this to be
super-polynomial

and this to be
negligible

SIM-CPA
secure if:

∀ PPT

∃ PPT s.t.

∀ PPT

Key/
Enc

Key/
Dec

Env

Send Recv

Env

REALIDEAL

SIM-CPA Security

IDEAL ≈ REAL

Symmetric-Key Encryption

| Pr[IDEAL=0] - Pr[REAL=0] |
is negligible

b

Experiment picks a random bit b. It also
runs KeyGen to get a key K

For as long as Adversary wants

Adv sends two messages m0, m1
to the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiment outputs 1 iff b’=b

IND-CPA secure if for all “efficient”
adversaries Pr[b’=b] ≈ 1/2

Key/
Enc

b←{0,1}

b’=b?

m0,m1

mb

Enc(mb,K)

b’

Yes/No

IND-CPA Security
Symmetric-Key Encryption

IND-CPA +
~correctness

equivalent to

SIM-CPA

| Pr[b’=b] - 1/2 |
 is negligible

PPT

Indistinguishability
Security definitions often refer to indistinguishability of two
distributions: e.g., REAL vs. IDEAL, or Enc(m0) vs. Enc(m1)

By a distinguisher who outputs a single bit

3 levels of indistinguishability

Perfect: the two distributions are identical

Computational: for all PPT distinguishers, probability of
the output bit being 1 is only negligibly different in the
two cases

Statistical: the two distributions are “statistically close”

Hard to distinguish, irrespective of the computational
power of the distinguisher

Pr
ob

ab
ili
ty

0

0.05

0.1

0.15

0.2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Pr
ob

ab
ili
ty

0

0.05

0.1

0.15

0.2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Statistical Indistinguishability
Given two distributions A and B over the same sample space, how well
can a (computationally unbounded) test T distinguish between them?

T is given a single sample drawn from A or B

How differently does it behave in the two cases?

Δ(A,B) := max T | Prx←A[T(x)=1] - Prx←B[T(x)=1] |

Two distribution ensembles {Ak}k, {Bk}k are statistically indistinguishable
from each other if Δ(Ak,Bk) is negligible in k

Pr
ob

ab
ili
ty

0

0.05

0.1

0.15

0.2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Statistical Difference (Distance)
or Total Variation Distance

Next

Constructing (CPA-secure) SKE schemes

Pseudorandomness Generator (PRG)

One-Way Functions (& OW Permutations)

OWP → PRG → (CPA-secure) SKE

