
Symmetric-Key Encryption:
One-Way Functions

Lecture 6

PRG from One-Way Permutations

Story So far

PRG (i.e., a Stream Cipher) for one-time SKE

“Mode of operation”: msg ⊕ pseudorandom pad

PRF (i.e., a Block Cipher) for full-fledged SKE

Many standard modes of operation:
OFB, CTR, CBC, …

All provably CPA-secure if the Block Cipher
is a PRF (or PRP with trapdoor, for CBC).
CTR mode is recommended (most efficient)

In practice, fast/complex constructions for Block Ciphers

But in principle, a PRF can be securely built from a PRG

RE
CA

LL

SC ⊕K

m

Enc

BC ⊕
K

m

(block)Enc

r

PRG

Can build a PRG from a one-bit stretch PRG,
Gk: {0,1}k → {0,1}k+1

Can use part of the PRG output as a new seed

Stream cipher: the intermediate seeds are never output, can
keep stretching on demand (for any “polynomial length”)

G
k k

1

Rk

G G G G...GRk

RE
CA

LL

coming up

One-Way Function

fk: {0,1}k → {0,1}n(k) is a one-way function (OWF) if

f is polynomial time computable

For all (non-uniform) PPT adversary, probability
of success in the “OWF experiment” is negligible

Note: x may not be completely hidden by f(x)

x←{0,1}k

f(x’)=f(x)?

f(x)

x’

Yes/No

One-Way Function
Candidates

Integer factorization:

fmult(x,y) = x⋅y

Input distribution: (x,y) random k-bit primes

Fact: taking input domain to be the set of all k-bit integers,
with input distribution being uniform over it, will also work
(if k-bit primes distribution works)

In that case, it is important that we require |x|=|y|=k,
not just |x⋅y|=2k (otherwise, 2 is a valid factor of x.y
with 3/4 probability)

One-Way Function
Candidates

Solving Subset Sum:

fsubsum(x1...xk, S) = (x1...xk, Σi∈S xi)

Input distribution: xi k-bit integers, S⊆{1...k}. Uniform

Inverting fsubsum known to be NP-hard, but assuming that
it is a OWF is “stronger” than assuming P≠NP

Note: (x1,…,xk) is “public” (given as part of the output to be
inverted)

OWF Collection: A collection of subset sum problems, all
with the same (x1,…,xk) (and independent S)

One-Way Function
Candidates

Goldreich’s Candidate:

fGoldreich(x, S1,…,Sn, P) = (P(x|S1),…,P(x|Sn),S1,…,Sn, P)

x ∈ {0,1}k, Si⊆[k] with |Si|=d, P:{0,1}d → {0,1},
and x|S stands for x restricted to indices in S

Input distribution: uniformly random with the requisite
structure

OWF Collection: (S1,…,Sn,P) forms the index

Rabin OWF: fRabin(x; n) = (x2 mod n, n), where n = pq, and p, q are
random k-bit primes, and x is uniform from {0...n}

OWF collection: indexed by n

More: e.g, Discrete Logarithm (uses as index: a group & generator),
RSA function (uses as index: n=pq & an exponent e).

Later

One-Way Function
Candidates

Hardcore Predicate

OWFs provide no hiding property that can be readily
used

E.g. every single bit of (random) x may be
significantly predictable from f(x), even if f is a OWF
[Exercise]

Hardcore predicate associated with f: a function B
such that B(x) remains “completely” hidden given f(x)

x←{0,1}k

b’ = B(x)?

f(x)

b’

Yes/No

Hardcore Predicates

For candidate OWFs, often hardcore predicates known

e.g. if fRabin(x;n) is a OWF, then LSB(x) is a hardcore
predicate for it

Reduction: Given an algorithm for finding LSB(x)
from fRabin(x;n) for random x, one can use it
(efficiently) to invert fRabin

Goldreich-Levin
Predicate

Given any OWF f, can slightly modify it to get a OWF gf such that

gf has a simple hardcore predicate

gf is almost as efficient as f; is a permutation if f is one

gf(x,r) = (f(x), r), where |r|=|x|

Input distribution: x as for f, and r independently random

GL-predicate: B(x,r) = <x,r> (dot product of bit vectors)

Can show that a predictor of B(x,r) with non-negligible
advantage can be turned into an inversion algorithm for f

Predictor for B(x,r) is a “noisy channel” through which x, encoded
as (<x,0>,<x,1>...<x,2|x|-1>) (Walsh-Hadamard code), is transmitted.
Can efficiently recover x by error-correction (local list decoding).

PRG from One-Way
Permutations

One-bit stretch PRG, Gk: {0,1}k → {0,1}k+1

G(x) = f(x)◦B(x)

Where f: {0,1}k → {0,1}k is a one-way permutation, and B a
hardcore predicate for f

Claim: G is a PRG

For a random x, f(x) is also random (because permutation),
and hence all of f(x) is next-bit unpredictable.

B is a hardcore predicate, so B(x) remains unpredictable
after seeing f(x)

G
k k

1

Rk

bijection

Summary
OWF: a very simple cryptographic primitive with several
candidates

Every OWF/OWP has a hardcore predicate associated with it
(Goldreich-Levin)

PRG from a OWP and a hardcore predicate for it

A PRG can be constructed from a OWF too, but more
complicated. (And, some candidate OWFs are anyway
permutations.)

Last time: PRF from PRG

PRG can be used as a stream-cipher (for one-time CPA secure
SKE), and a PRF can be used as a block-cipher (for full-fledged
CPA secure SKE)

