Symmetric-Key Encryption: One-Way Functions

Lecture 6
PRG from One-Way Permutations
Story So far

PRG (i.e., a Stream Cipher) for one-time SKE
- “Mode of operation”: msg ⊕ pseudorandom pad
PRF (i.e., a Block Cipher) for full-fledged SKE
- Many standard modes of operation: OFB, CTR, CBC, ...
- All provably CPA-secure if the Block Cipher is a PRF (or PRP with trapdoor, for CBC).
 CTR mode is recommended (most efficient)
In practice, fast/complex constructions for Block Ciphers
But in principle, a PRF can be securely built from a PRG
Can build a PRG from a one-bit stretch PRG, $G_k: \{0,1\}^k \rightarrow \{0,1\}^{k+1}$

Can use part of the PRG output as a new seed

Stream cipher: the intermediate seeds are never output, can keep stretching on demand (for any “polynomial length”)
One-Way Function

- $f_k: \{0,1\}^k \rightarrow \{0,1\}^{n(k)}$ is a one-way function (OWF) if
 - f is polynomial time computable
 - For all (non-uniform) PPT adversary, probability of success in the “OWF experiment” is negligible
 - Note: x may not be completely hidden by $f(x)$
One-Way Function Candidates

- Integer factorization:
 - $f_{\text{mult}}(x,y) = x \cdot y$

- Input distribution: (x,y) random k-bit primes

- Fact: taking input domain to be the set of all k-bit integers, with input distribution being uniform over it, will also work (if k-bit primes distribution works)

- In that case, it is important that we require $|x|=|y|=k$, not just $|x \cdot y|=2k$ (otherwise, 2 is a valid factor of $x \cdot y$ with $3/4$ probability)
One-Way Function Candidates

Solving Subset Sum:

\[f_{\text{subsum}}(x_1...x_k, S) = (x_1...x_k, \sum_{i \in S} x_i) \]

Input distribution: \(x_i \) k-bit integers, \(S \subseteq \{1...k\} \). Uniform

Inverting \(f_{\text{subsum}} \) known to be NP-hard, but assuming that it is a OWF is “stronger” than assuming \(P \neq NP \)

Note: \((x_1,...,x_k)\) is “public” (given as part of the output to be inverted)

OWF Collection: A collection of subset sum problems, all with the same \((x_1,...,x_k)\) (and independent \(S \))
One-Way Function Candidates

Goldreich’s Candidate:

$$f_{\text{Goldreich}}(x, S_1, \ldots, S_n, P) = (P(x|_{S_1}), \ldots, P(x|_{S_n}), S_1, \ldots, S_n, P)$$

- $$x \in \{0,1\}^k$$, $$S_i \subseteq [k]$$ with $$|S_i| = d$$, $$P: \{0,1\}^d \to \{0,1\}$$,
- and $$x|_S$$ stands for $$x$$ restricted to indices in $$S$$

Input distribution: uniformly random with the requisite structure

OWF Collection: $$(S_1, \ldots, S_n, P)$$ forms the index
One-Way Function Candidates

- **Rabin OWF**: $f_{\text{Rabin}}(x; n) = (x^2 \mod n, n)$, where $n = pq$, and p, q are random k-bit primes, and x is uniform from $\{0...n\}$

 - **OWF collection**: indexed by n

- More: e.g., **Discrete Logarithm** (uses as index: a group & generator), **RSA function** (uses as index: $n=pq$ & an exponent e).

- Later
Hardcore Predicate

- OWFs provide no hiding property that can be readily used.
- E.g. every single bit of (random) \(x \) may be significantly predictable from \(f(x) \), even if \(f \) is a OWF

 [Exercise]

- Hardcore predicate associated with \(f \): a function \(B \) such that \(B(x) \) remains “completely” hidden given \(f(x) \)
Hardcore Predicates

- For candidate OWFs, often hardcore predicates known

- e.g. if $f_{\text{Rabin}}(x;n)$ is a OWF, then $\text{LSB}(x)$ is a hardcore predicate for it

- **Reduction**: Given an algorithm for finding $\text{LSB}(x)$ from $f_{\text{Rabin}}(x;n)$ for random x, one can use it (efficiently) to invert f_{Rabin}
Goldreich-Levin Predicate

Given any OWF f, can slightly modify it to get a OWF g_f such that
- g_f has a simple hardcore predicate
- g_f is almost as efficient as f; is a permutation if f is one

$g_f(x,r) = (f(x), r)$, where $|r| = |x|$

Input distribution: x as for f, and r independently random

GL-predicate: $B(x,r) = \langle x,r \rangle$ (dot product of bit vectors)

Can show that a predictor of $B(x,r)$ with non-negligible advantage can be turned into an inversion algorithm for f

Predictor for $B(x,r)$ is a “noisy channel” through which x, encoded as $(\langle x,0 \rangle, \langle x,1 \rangle, ... \langle x,2^{|x|}-1 \rangle)$ (Walsh-Hadamard code), is transmitted. Can efficiently recover x by error-correction (local list decoding).
PRG from One-Way Permutations

- One-bit stretch PRG, G_k: $\{0,1\}^k \rightarrow \{0,1\}^{k+1}$

 \[G(x) = f(x) \circ B(x) \]

 Where $f: \{0,1\}^k \rightarrow \{0,1\}^k$ is a one-way permutation, and B a hardcore predicate for f

- Claim: G is a PRG

 For a random x, $f(x)$ is also random (because permutation), and hence all of $f(x)$ is next-bit unpredictable.

 B is a hardcore predicate, so $B(x)$ remains unpredictable after seeing $f(x)$
Summary

- OWF: a very simple cryptographic primitive with several candidates

- Every OWF/OWP has a hardcore predicate associated with it (Goldreich-Levin)

- PRG from a OWP and a hardcore predicate for it

 - A PRG can be constructed from a OWF too, but more complicated. (And, some candidate OWFs are anyway permutations.)

- Last time: PRF from PRG

- PRG can be used as a stream-cipher (for one-time CPA secure SKE), and a PRF can be used as a block-cipher (for full-fledged CPA secure SKE)