
Symmetric-Key Encryption: 
One-Way Functions

Lecture 6

PRG from One-Way Permutations



Story So far

PRG (i.e., a Stream Cipher) for one-time SKE


“Mode of operation”: msg ⊕ pseudorandom pad


PRF (i.e., a Block Cipher) for full-fledged SKE


Many standard modes of operation:  
OFB, CTR, CBC, …


All provably CPA-secure if the Block Cipher 
is a PRF (or PRP with trapdoor, for CBC).  
CTR mode is recommended (most efficient)


In practice, fast/complex constructions for Block Ciphers


But in principle, a PRF can be securely built from a PRG
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PRG

Can build a PRG from a one-bit stretch PRG,  
Gk: {0,1}k → {0,1}k+1


Can use part of the PRG output as a new seed


Stream cipher: the intermediate seeds are never output, can 
keep stretching on demand (for any “polynomial length”)
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One-Way Function

fk: {0,1}k → {0,1}n(k) is a one-way function (OWF) if


f is polynomial time computable


For all (non-uniform) PPT adversary, probability 
of success in the “OWF experiment” is negligible


Note: x may not be completely hidden by f(x)

x←{0,1}k


f(x’)=f(x)?

f(x)

x’

Yes/No



One-Way Function 
Candidates

Integer factorization:


fmult(x,y) = x⋅y


Input distribution: (x,y) random k-bit primes


Fact: taking input domain to be the set of all k-bit integers, 
with input distribution being uniform over it, will also work 
(if k-bit primes distribution works)


In that case, it is important that we require |x|=|y|=k, 
not just |x⋅y|=2k (otherwise, 2 is a valid factor of x.y 
with 3/4 probability)



One-Way Function 
Candidates

Solving Subset Sum:


fsubsum(x1...xk, S) = (x1...xk, Σi∈S xi )


Input distribution: xi k-bit integers, S⊆{1...k}. Uniform


Inverting fsubsum known to be NP-hard, but assuming that 
it is a OWF is “stronger” than assuming P≠NP


Note: (x1,…,xk) is “public” (given as part of the output to be 
inverted)


OWF Collection: A collection of subset sum problems, all 
with the same (x1,…,xk) (and independent S)



One-Way Function 
Candidates

Goldreich’s Candidate:


fGoldreich(x, S1,…,Sn, P) = (P(x|S1),…,P(x|Sn),S1,…,Sn, P)


x ∈ {0,1}k, Si⊆[k] with |Si|=d, P:{0,1}d → {0,1}, 
and x|S stands for x restricted to indices in S 


Input distribution: uniformly random with the requisite 
structure


OWF Collection: (S1,…,Sn,P) forms the index



Rabin OWF: fRabin(x; n) = (x2 mod n, n), where n = pq,  and p, q are 
random k-bit primes, and x is uniform from {0...n}


OWF collection: indexed by n


More: e.g, Discrete Logarithm (uses as index: a group & generator), 
RSA function (uses as index: n=pq & an exponent e).


Later

One-Way Function 
Candidates



Hardcore Predicate

OWFs provide no hiding property that can be readily 
used


E.g. every single bit of (random) x may be 
significantly predictable from f(x), even if f is a OWF 
[Exercise]


Hardcore predicate associated with f: a function B 
such that B(x) remains “completely” hidden given f(x)

x←{0,1}k


b’ = B(x)?

f(x)

b’

Yes/No



Hardcore Predicates

For candidate OWFs, often hardcore predicates known


e.g. if fRabin(x;n) is a OWF, then LSB(x) is a hardcore 
predicate for it


Reduction: Given an algorithm for finding LSB(x) 
from fRabin(x;n) for random x, one can use it 
(efficiently) to invert fRabin



Goldreich-Levin 
Predicate

Given any OWF f, can slightly modify it to get a OWF gf such that


gf has a simple hardcore predicate


gf is almost as efficient as f; is a permutation if f is one


gf(x,r) = (f(x), r), where |r|=|x|


Input distribution: x as for f, and r independently random


GL-predicate: B(x,r) = <x,r> (dot product of bit vectors)


Can show that a predictor of B(x,r) with non-negligible 
advantage can be turned into an inversion algorithm for f


Predictor for B(x,r) is a “noisy channel” through which x, encoded 
as (<x,0>,<x,1>...<x,2|x|-1>) (Walsh-Hadamard code), is transmitted. 
Can efficiently recover x by error-correction (local list decoding).



PRG from One-Way 
Permutations

One-bit stretch PRG, Gk: {0,1}k → {0,1}k+1


G(x) = f(x)◦B(x)


Where f: {0,1}k → {0,1}k is a one-way permutation, and B a 
hardcore predicate for f


Claim: G is a PRG


For a random x, f(x) is also random (because permutation), 
and hence all of f(x) is next-bit unpredictable. 


B is a hardcore predicate, so B(x) remains unpredictable 
after seeing f(x)
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Summary
OWF: a very simple cryptographic primitive with several 
candidates


Every OWF/OWP has a hardcore predicate associated with it 
(Goldreich-Levin)


PRG from a OWP and a hardcore predicate for it


A PRG can be constructed from a OWF too, but more 
complicated. (And, some candidate OWFs are anyway 
permutations.)


Last time: PRF from PRG


PRG can be used as a stream-cipher (for one-time CPA secure 
SKE), and a PRF can be used as a block-cipher (for full-fledged 
CPA secure SKE)


