Public-Key Cryptography

Public-Key Encryption
Diffie-Hellman Key-Exchange

-

Shared/Symmetric-Key
Encryption
(a.k.a. private-key
encryption)

N

V
@ SKE:

@ Syntax

@ KeyGen outputs

K<< %

@ Enc: XK xR —>C

PKE scheme

o PKE 4 a.k.a. asymmetric-key encryp’rionJ

@ Syntax

@ KeyGen outputs
(PK,SK) < P%'xS%

@ Enc: MxXPKXR—C

@ Dec: CxXK— P7 ® Dec: CxSK— 97

@ Correctness

@ VK € Range(KeyGen),
Dec(Enc(m,K), K) = m

@ Correctness

@ V(PK,SK) € Range(KeyGen),
Dec(Enc(m,PK), SK) = m

@ Security (SIM/IND-CPA) @ Security (SIM/IND-CPA,

PKE version)

SIM-CPA (PKE Version)

O m O -
é Enc gﬁ
A A Dec
PK
1
m Secure (and
corroc’r) if:
I ’ 3 x s.t.
ou’rpu’r of @ is
distributed
indistinguishably in REAL
IDEAL REAL and IDEAL

IND-CPA (SKE version)

@ Experiment picks a random bit b. It also
runs KeyGen to get a key K

@ For as long as Adversary wants

@ Adv sends two messages mo, m;
to the experiment

@ Expt returns Enc(my,K) to the

adversary ¢ s
en nNo nee p

for multiple
: , $ Challenges! b<{0,1}
@ Experiment outputs 1 iff b'=b \yyiq hybrids - b:?
@ IND-CPA secure if for all PPT i e

adversaries Pr[b’=b] - 1/2 < w(k) lYes/No

@ Adversary returns a guess b’

KE
IND-CPA (versio

@ Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv /&
given PK

K
@ Adv sends two messages mo, m; to qi :
the experiment Mp

@ Expt returns Enc(my,K) to the ‘
adversary i
@ Adversary returns a guess b’ Ib'

@ Experiment outputs 1 iff b'=b [b<—{0,1} J

@ IND-CPA secure if for all PPT ~ b'=b?
adversaries Pr[b’=b] - 1/2 < v(Kk) lyes /No

IND-CPA +

IND-CPA (PKE versio -correctes

equivalent to

SIM-CPA
@ Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv EP'K
given PK s
PK 'EEnc(mb,PK)

@ Adv sends two messages mo, m; o
the experiment Mb

@ Expt returns Enc(my,K) to the
adversary

@ Adversary returns a guess b’
@ Experiment outputs 1 iff b'=b [b<—10,1} j

@ IND-CPA secure if for all PPT b'=b?
adversaries Pr[b’=b] - 1/2 < v(Kk) lyes /No

Perfect Secrecy?

@ No perfectly secret and correct PKE (even for one-time encryption)

@ Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

@ Intuition: If Eve thinks Bob could decrypt it as two messages
based on different SKs, Alice should be concerned too

@ i.e., Alice conveys same information to Bob and Eve

@ [Exercise]

@ PKE only with computational security

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Random x
X=g* >
W Random y W&
Y Y:gy

Output Yx Output Xv

& g% g’
‘ gxy 27

Why DH-Key-exchange
could be secure

@ Given g%, g for random x, vy, g<¥ should be “hidden”
@ i.e., could sftill be used as a pseudorandom element
o i.e., (g%, g%, gv) = (g%, g%, R)

@ Is that reasonable o expect?

@ Depends on the “group”

d

Groups, by examples

A group (G, *) specified by a set G (for us finite, unless [Abelian
otherwise specified) and a “group operation” * that is
associative, has an identity, is invertible, and (for us) commutative
Examples: Z = (integers, +) (this is an infinite group), Direct
Product
AN = (integers modulo N, + mod N), e

G" = (Cartesian product of a group G, coordinate-wise operation)
Lagranges }

Order of a group G: |G| = number of elements in G .

For any aeG, a6l = a*a*..*a (|G| times) = identity

Finite Cyclic group (in multiplicative notation): there
is one element g such that G = {q°, g!, g2, ... gl6--1}

@ Prototype: Zy (additive group), with g=1
@ or any d s.t. ged(d,N) =1

Groups, by examples

@ AN = (1de[N] | ged(d,N) = 1}, multiplication mod N)
@ Numbers in {1,..,N-1} which have a multiplicative inverse mod N

o Fact: If N is prime, ZN" is a cyclic group, of order N-1

o e.g. Is" = 11,2,3,4} is generated by 2 (a\x 1,2,4,3), and

by 3 (as 1,3,4,2). But 1 and 4 are not gerierators.

@ (Also cyclic for certain other values of N)| Generators are called
Primitive Roots of N

Computing on a Group

® We need groups with efficient algorithms to work on them
@ An ensemble of groups, indexed by security parameter

@ Group generation: Given a security parameter, output a
group G and a generator for it, g

@ Elements of G should have (about) k-bit representation
@ Note: |G| can be exponentially large in k

® G has polynomial time algorithms for adding, inverting and
randomly sampling a group element

o * Repeated
Discrete Log Assumption -
@ Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = g* (x € {0,1,...,1GI|-1})

@ In a (computationally efficient) group, given integer x and thg
standard representation of a group element g, can efficiently find
the standard representation of X=gx (How?)

@ But given X and g, may not be easy to find x (depending on G)

@ DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)<—GroupGen; X<—G; AdV(G,g,X)—2; g2=X?/_ collec’rion}

@ If DLA broken, then Diffie-Hellman key-exchange broken Rfi:(x’f’;s)

@ Eve gets x, y from g%, g¥ (sometimes) and can compute gxv herself

@ A “key-recovery” attack

@ Note: could potentially break pseudorandomness without breaking
DLA too

Decisional Diffie-Hellman
(DDH) Assumption

@ g%, 9%, §)iG,g)GroupGen; xyllell = ¥, ¥, 9)}(G.g) GroupGen; x,y.rIGI
@ At least as strong as DLA

@ If DDH assumption holds, then DLA holds [\Why?]
@ But possible that DLA holds and DDH assumption doesnt

@ e.g.: DLA is widely believed to hold in Z," (p prime), but
DDH assumption doesnt hold there!

@ Next time

