Public-Key Cryptography

Lecture 10

DDH Assumption

El Gamal Encryption

Public-Key Encryption from Trapdoor OWP
Diffie-Hellman Key-exchange

“Secure” if \((g^x, g^y, g^{xy}) \approx (g^x, g^y, g^r)\)

Random \(x \in \{0, \ldots, |G|-1\}\)

\(X = g^x\)

Output \(Y^x\)

Random \(y \in \{0, \ldots, |G|-1\}\)

\(Y = g^y\)

Output \(X^y\)

\(g^x, g^y, g^{xy} ??\)
Decisional Diffie-Hellman (DDH) Assumption

\[\{(g^x, g^y, g^{xy}; G, g)\} \approx \{(g^x, g^y, g^r; G, g)\} \]

At least as strong as Discrete Log Assumption (DLA)

- DLA: \(\text{Raise}(x; G, g) = (g^x; G, g) \) is a OWF collection

- If DDH assumption holds, then DLA holds [Why?]

But possible that DLA holds and DDH assumption doesn’t

- e.g.: DLA is widely assumed to hold in \(\mathbb{Z}_p^* \) (p prime), but DDH assumption doesn’t hold there! (coming up)

Also coming up: a candidate group for DDH
A Candidate DDH Group

Consider \mathbb{QR}_p^*: subgroup of Quadratic Residues ("even power" elements) of \mathbb{Z}_p^*

Easy to check if an element is a QR or not:
check if raising to $|G|/2$ gives 1 (identity element)

DDH does not hold in \mathbb{Z}_p^*: g^{xy} is a QR w/ prob. 3/4;
g^z is QR only w/ prob. 1/2.

How about in \mathbb{QR}_p^*?

Could check if cubic residue in \mathbb{Z}_p^*!

But if $(P-1)$ is not divisible by 3, all elements in \mathbb{Z}_p^*
are cubic residues!

“Safe” if $(P-1)/2$ is also prime: P called a safe-prime

DDH Candidate:
\mathbb{QR}_p^*
where P is a random k-bit safe-prime

(P-1)/2 called a Sophie Germain prime
El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-exchange is his PK

Alice’s message in the key-exchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen: PK=(G,g,Y), SK=(G,g,y)

Enc\((G,g,Y)\)(M) = (X=g^x, C=MY^x)

Dec\((G,g,y)\)(X,C) = CX^{-y}

- KeyGen uses GroupGen to get (G,g)
- x, y uniform from \(\mathbb{Z}_{|G|}\)
- Message encoded into group element, and decoded
Security of El Gamal

El Gamal is IND-CPA secure if DDH holds (for the collection of groups used)

Construct a DDH adversary A^* given an IND-CPA adversary A

$A^*(G,g; g^x,g^y,g^z)$ (where $(G,g) \leftarrow \text{GroupGen}$, x,y random and $z=xy$ or random) plays the IND-CPA experiment with A:

- But sets $PK=(G,g,g^y)$ and $Enc(M_b)=(g^x,M_bg^z)$

Outputs 1 if experiment outputs 1 (i.e. if $b=b'$)

When $z=\text{random}$, A^* outputs 1 with probability = $1/2$

When $z=xy$, exactly IND-CPA experiment: A^* outputs 1 with probability = $1/2 + \text{advantage of A}$.
Abstracting El Gamal

- **Trapdoor PRG:**
 - **KeyGen:** a pair (PK, SK)
 - Three functions: $G_{PK}(.)$ (a PRG) and $T_{PK}(.)$ (make trapdoor info) and $R_{SK}(.)$ (opening the trapdoor)
 - $G_{PK}(x)$ is pseudorandom even given $T_{PK}(x)$ and PK
 - $(PK, T_{PK}(x), G_{PK}(x)) \approx (PK, T_{PK}(x), r)$
 - $T_{PK}(x)$ hides $G_{PK}(x)$. SK opens it.
 - $R_{SK}(T_{PK}(x)) = G_{PK}(x)$
 - Enough for an IND-CPA secure PKE scheme (e.g., Security of El Gamal)

- **KeyGen:** $PK=(G,g,Y)$, $SK=(G,g,y)$
 - $Enc_{(G,g,Y)}(M) = (X=g^x, C=MY^x)$
 - $Dec_{(G,g,Y)}(X,C) = CX^{-y}$

- **KeyGen:** (PK, SK)
 - $Enc_{PK}(M) = (X=T_{PK}(x), C=M.G_{PK}(x))$
 - $Dec_{SK}(X,C) = C/R_{SK}(T_{PK}(x))$
Trapdoor PRG from Generic Assumption?

- PRG constructed from OWP (or OWF)
- Allows us to instantiate the construction with several candidates
- Is there a similar construction for TPRG from OWP?
- Trapdoor property seems fundamentally different: generic OWP does not suffice
- Will start with “Trapdoor OWP”

\[\text{KeyGen} \]

\[(\text{PK}, \text{T}_{\text{PK}}(x), \text{G}_{\text{PK}}(x)) \approx (\text{PK}, \text{T}_{\text{PK}}(x), r) \]

But typically not used in practice
(KeyGen,f,f') (all PPT) is a trapdoor one-way permutation if

- For all (PK,SK) ← KeyGen
 - f_{PK} a permutation
 - f'_{SK} is the inverse of f_{PK}
- For all PPT adversary, probability of success in the Trapdoor OWP experiment is negligible
(KeyGen, f, f') (all PPT) is a trapdoor one-way permutation if

- For all (PK, SK) \leftarrow \text{KeyGen}
- f_{PK} \text{ a permutation}
- f'_{SK} \text{ is the inverse of } f_{PK}
- For all PPT adversary, probability of success in the Trapdoor OWP experiment is negligible

Hardcore predicate:

- B_{PK} \text{ s.t. } (PK, f_{PK}(x), B_{PK}(x)) \approx (PK, f_{PK}(x), r)
Same construction as PRG from OWP

One bit Trapdoor PRG

KeyGen same as Trapdoor OWP’s KeyGen

$G_{PK}(x) := B_{PK}(x),\ T_{PK}(x) := f_{PK}(x),\ R_{SK}(y) := G_{PK}(f'_{SK}(y))$

(SK assumed to contain PK)

More generally, last permutation output serves as T_{PK}
Candidate Trapdoor OWPs

- From some (candidate) OWP collections, with index as public-key
- Recall candidate OWF collections

Rabin OWF: \(f_{\text{Rabin}}(x; N) = x^2 \mod N \), where \(N = PQ \), and \(P, Q \) are \(k \)-bit primes (and \(x \) uniform from \{0…N-1\})

Fact: \(f_{\text{Rabin}}(.; N) \) is a permutation among quadratic residues, when \(P, Q \) are \(\equiv 3 \pmod{4} \)

Fact: Can invert \(f_{\text{Rabin}}(.; N) \) given factorization of \(N \)

RSA function: \(f_{\text{RSA}}(x; N,e) = x^e \mod N \) where \(N=PQ \), \(P,Q \) \(k \)-bit primes, \(e \) s.t. \(\gcd(e,\varphi(N)) = 1 \) (and \(x \) uniform from \{0…N-1\})

Fact: \(f_{\text{RSA}}(.; N,e) \) is a permutation

Fact: While picking \((N,e)\), can also pick \(d \) s.t. \(x^{ed} = x \)