Public-Key Cryptography
Lecture 10
DDH Assumption

El Gamal Encryption
Public-Key Encryption from Trapdoor OWP

y Diffie-Hellman

Key-exchange

@ "Secure” if (gx,97,9%) = (g*,9%.9")

Random xe {0,..,|1G|-1} Random ye {0,..,|G|-1}

ngx X

Output Yx

Output Xv

Decisional Diffie-Hellman
(DDH) Assumption

: {(gxl 9": gxy; Glg)}(G,g)ﬁGroquen e {(sz gyl 9r5 Glg)}(G,g)eGroquen

X,y < [IGl] x,y.r < [|IGl]

® At least as strong as Discrete Log Assumption (DLA)
@ DLA: Raise(x; G,g) = (g%; G,g) is a OWF collection
@ If DDH assumption holds, then DLA holds [\Why?]
@ But possible that DLA holds and DDH assumption doesnt

@ e.g.: DLA is widely assumed to hold in Z," (p prime), but DDH
assumption doesnt hold there! (coming up)

@ Also coming up: a candidate group for DDH

A Candidate DDH Group

@ Consider @QRp" : subgroup of Quadrahc Residues

(“even power” elements) of Z

@ Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

@ DDH does not hold in Zp" : gx¥ is a QR w/ prob. 3/4;

P —

g? is QR only w/ prob. 1/2. 3 PSS
& How about in QRp™? | QRp
where P is a random
@ Could check if cubic residue in Zp"! k-bit safe-prime

@ But if (P-1) is not divisible by 3, all elements in Z
are cubic residues! % (P-1)/2 called a Sophie Germain prime)

@ "Safe” if (P-1)/2 is also prime: P called a safe-prime

El Gamal Encryption

Random vy
W Y:gy
@ Based on DH key-exchange Random x
X
. W X=g < w
@ All.ce, Bob generate a key e K=Xy
using DH key-exchange C=MK ° >
M=CK-!

@ Then use it as a one-time pad

KeyGen: PK=(G,g,Y), SK=(G,g,y)
EnC(G,gly)(N\) = (X=gx, C=N\Yx)
Dec(G,gy)(X,C) = CX~

@ Bobs "message” in the key-
exchange is his PK

@ Alices message in the key-
exchange and the ciphertext of
the one-tfime Pad +Oge+her form ® Message encoded into group element, and
a single ciphertext decoded

® KeyGen uses GroupGen to get (G,g)
® X, ¥ uniform from Zjg

Security of El Gamal

@ E|l Gamal is IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A‘ given an IND-CPA adversary A

o A(G,g; g¢,9°.9?) (where (G,g) < GroupGen, X,y random and
z=xy or random) plays the IND-CPA experiment with A:

@ But sets PK=(G,g,g¥) and Enc(Ms)=(g*,Mbg?)
@ Outputs 1 if experiment outputs 1 (i.e. if b=b’)
@ When z=random, A* outputs 1 with probability = 1/2

@ When z=xy, exactly IND-CPA experiment: A* outputs 1 with
probability = 1/2 + advantage of A.

Abstracting El Gamal

@ Trapdoor PRG: Y Random vy
<€ Y=qY
@ KeyGen: a pair (PK,SK) Random x 2 :

@ Three functions: Gex(.) (a PRG) R A
and Tpek(.) (make trapdoor info) R ¢ RN

C=MK >

and Rsk(.) (opening the trapdoor) L

® Gpk(x) is pseudorandom even

given TPK(X) and PK KeyGen: pK:(G,g,Y), SK:(G,g,y)

EnC(G,g,Y)(M) = (X=gx, C=MYx)

o (PK.Tex0).Gex(x)) PKTex(¥)r) 100 - (x€) = Cxr

@ Tpk(x) hides Gpk(x). SK opens it.
g RSK(TPK(X)) = GpK(X) KeyGen: (pK,SK)

Encex(M) = (X=Tpx(x), C=M.G
@ Enough for an IND-CPA secure PKE NCRA T () pr(x))
scheme (e.g., Security of El Gamal) Decsk(X,C) = C/Rsk(Tek(x))

Trapdoor PRG from
Generic Assumption?

KeyGen

® PRG constructed from OWP (or OWF)

PK SK
@ Allows us to instantiate the
e gty J R
—

construction with several
candidates

y4 y4
@ Is there a similar construction\tor l l

?
TPRG from OWP* PK, Tek(X),Gpk(x)) = (PK,Tex(x),r)

@ Trapdoor property seems
fundamentally different: generic
OWP does not suffice

@ Will start with “Trapdoor OWP*

not used in

But typically
practice

Trapdoor OWP

@ (KeyGen,f,f’) (all PPT) is a trapdoor one- ‘
way permutation if fok(x),P
@ For all (PK,SK) <KeyGen 1"’
f fati [g
@ fpx a permutation B
@ f'sk is the inverse of fpx XT{OJ?}"
X' = X%
@ For all PPT adversary, probability of ¥ 3

success in the Trapdoor OWP lYes/No
experiment is negligible

Trapdoor OWP

@ (KeyGen,f,f’) (all PPT) is a trapdoor one- ‘
way permutation if fok(x),P
@ For all (PK,SK) <KeyGen 119'
f tati i ¢
@ fex a permutation By
@ f'sc is the inverse of fpx x<—{0,1}K
b’ = BpK(X)?
@ For all PPT adversary, probability of

- J
success in the Trapdoor OWP lYes/No

experiment is negligible

@ Hardcore predicate:

@ Bpk s.1. (PK,fpx(x),Be(x)) = (PK,fek(x),r)

Trapdoor PRG from
Trapdoor OWP i

KeyGen

® Same construction as PRG from OWP PK./ :SK
T —

@ One bit Trapdoor PRG

@ KeyGen same as Trapdoor OWP's
KeyGen l “ lz
@ Gpr(x) := Bpk(x). Tex(X) := fpx(X). (PK, Tek(x),Gek(x)) = (PK,Te(x),r)
RsK(Y) = GpK(F'SK(y)) (PK, fex(x),Bek(x)) = (PK,fex(x).r)
® (SK assumed to contain PK) B L Ly
@ More generally, last permutation B”"_l B"K_l BpK_l

output serves as Tpx Gor(x)

Candidate Trapdoor OWPs

@ From some (candidate) OWP collections, with index as public-key
@ Recall candidate OWF collections

@ Rabin OWF: frabin(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0...N-1})

@ Fact: fravin(.; N) is a permutation among quadratic residues,
when P, Q are = 3 (mod 4)

@ Fact: Can invert frapin(.; N) given factorization of N

® RSA function: frsa(x; N,e) = xe mod N where N=PQ, P.Q k-bit
primes, e s.t. gcd(e,©(N)) = 1 (and x uniform from {0...N-1})

@ Fact: frsa(.; N,e) is a permutation

@ Fact: While picking (N,e), can also pick d s.t. xed = x

