Public-Key Cryptography

Lecture 11
Some Trapdoor OWP Candidates
Chinese Remainder Theorem

RECALL

CPA-secure PKE for Trapdoor OWP

- © CPA secure PKE from Trapdoor PRG
 - PRG family with a (PK,SK). PK specifies the family member.
 - © Can encapsulate the seed for the PRG such that:
 - PRG output remains pseudorandom even given PK and encapsulated seed
 - Can recover PRG output from encapsulated seed and SK
 - El Gamal: encapsulated seed = gx, PRG output = Yx
- Trapdoor PRG from Trapdoor OWP

 Telephone

 T

Candidate Trapdoor OWPs

- Two candidates using composite moduli
 - © RSA function: $f_{RSA}(x; N,e) = x^e \mod N$ where N=PQ, P,Q k-bit primes, e s.t. $gcd(e,\phi(N)) = 1$ (and x uniform from $\{0...N-1\}$)

 - Fact: While picking (N,e), can also pick d s.t. xed = x
 - - Fact: $f_{Rabin}(.; N)$ is a permutation among quadratic residues, when P, Q are \equiv 3 (mod 4)
 - Fact: Can invert f_{Rabin}(.; N) given factorization of N

ZN*

- Group operation: "multiplication modulo N"
 - Has identity, is associative
- Group elements: all numbers (mod N) which have a multiplicative inverse modulo N
 - e.g.: \mathbb{Z}_6^* has elements {1,5}, \mathbb{Z}_7^* has {1,2,3,4,5,6}
- a has a multiplicative inverse modulo N

- Extended Euclidean algorithm to find (b,d) given (a,N).

 Used to efficiently invert elements in \mathbb{Z}_N^*

Zp*, P prime

- Recall Zp*
- O Cyclic: Isomorphic to ℤ_{P-1}
- Discrete Log assumed to be hard
- Quadratic Residues form a subgroup QRP*

Z_N*, N=PQ, two primes

- \circ e.g. $\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$

Also works with P, Q co-primes

- Group operation and inverse efficiently computable
- Cyclic?
 - No! In \mathbb{Z}_{15}^* , $2^4 = 4^2 = 7^4 = 8^4 = 11^2 = 13^4 = 14^2 = 1$ (i.e., each generates at most 4 elements, out of 8)
- \circ "Product of two cycles": \mathbb{Z}_3 * and \mathbb{Z}_5 *
 - Chinese Remainder Theorem

Chinese Remainder Theorem

- \circ Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5
- ORT says that the pair (a mod 3, a mod 5) uniquely determines a (mod 15)!
 - All 15 possible pairs occur, once each
- In general for N=PQ (P, Q relatively prime), a → (a mod P, a mod Q) maps the N elements to the N distinct pairs
 - In fact extends to product of more than two (relatively prime) numbers

Z 15	\mathbb{Z}_3	Z ₅
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6 7	0	1
7	1	2 3
8	1 2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

Chinese Remainder Theorem and Z_N

- © CRT representation of \mathbb{Z}_N : every element of \mathbb{Z}_N can be written as a unique element of $\mathbb{Z}_P \times \mathbb{Z}_Q$
 - Addition can be done coordinate-wise
- Can efficiently compute the isomorphism (in both directions) if P, Q known [Exercise]

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathcal{I}_5
O	0	0
1	1	1
2	2	2
2 3 4	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

Chinese Remainder Theorem

and \mathbb{Z}_N^*

- - \odot Consider the same mapping into $\mathbb{Z}_P \times \mathbb{Z}_Q$
 - Multiplication (and identity, and inverse) also coordinate-wise
 - No multiplicative inverse iff (0,b) or (a,0)

		SEE CLUBA
Z 15	Z 3	Z 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3 4
14	2	4

RSA Function

- \circ $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ $\mathbb{Z}_{φ(N)}^*$)
 - \circ $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \bullet Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- - In fact, there exists d s.t. f_{RSA[N,d]} is the inverse of f_{RSA[N,e]}
 - \odot d s.t. ed = 1 (mod $\phi(N)$) \Rightarrow x^{ed} = x (mod N)
 - Why? In \mathbb{Z}_N^* because order of \mathbb{Z}_N^* is $\phi(N)$
 - In \mathbb{Z}_N too, by CRT: $\mathbb{Z}_N \cong \mathbb{Z}_P \times \mathbb{Z}_Q$ and $\Phi(N) = \Phi(P)\Phi(Q)$
 - Exponentiation works coordinate-wise

RSA Function

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ $\mathbb{Z}_{φ(N)}^*$)
 - oflet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - Alternately, $f_{RSA[N,e]}$: Z_N^* → Z_N^*
- RSA Assumption: $f_{RSA[N,e]}$ is a OWF collection, when P, Q random k-bit primes and e < N random number s.t. gcd(e,φ(N))=1 (with inputs uniformly from \mathbb{Z}_N or \mathbb{Z}_N^*)
 - Alternate version: e=3, P, Q restricted so that gcd(3, ϕ (N))=1
- RSA Assumption will be false if one can factorize N
 - Then knows $\phi(N) = (P-1)(Q-1)$ and can find d s.t. ed = 1 (mod $\phi(N)$)
 - Converse not known to hold
- Trapdoor OWP Candidate

Rabin Function

- $f_{Rabin[N]}(x) = x^2 \mod N$ where N=PQ, P,Q primes = 3 mod 4
 - Is a candidate OWF collection (indexed by N)
 - Equivalent to the assumption that f_{mult} is a OWF (for the appropriate distribution)
 - If can factor N, will see how to find square-roots
 - So (P,Q) a trapdoor to "invert"
 - Fact: If can take square-root mod N, can factor N
 - \circ Coming up: Is a permutation over \mathbb{QR}_N^* , with trapdoor (P,Q)

Square-roots in \mathbb{Z}_{P}^{*}

- What are the square-roots of x² mod a prime?
- $0 \sqrt{1} = \pm 1$

$$\Rightarrow$$
 (x+1)=0 or (x-1)=0 (mod P)

 \Leftrightarrow x=1 (mod P) or x=-1 (mod P)

Square-roots in \mathbb{Z}_{P}^{*}

- What are the square-roots of x² mod a prime?
- $0 \sqrt{1} = \pm 1$

$$\Rightarrow$$
 (x+1)=0 or (x-1)=0 (mod P)

$$\Leftrightarrow$$
 x=1 (mod P) or x=-1 (mod P)

- More generally $\sqrt{(x^2)} = \pm x$ (because $x^2 = y^2$ (mod P) $\Leftrightarrow x = \pm y$)
 - \bullet -x = x·g^{(P-1)/2} appears "diametrically opposite" x

Square-roots in QRp*

- o In $\mathbb{Z}_{p}^{*} \sqrt{(x^2)} = \pm x$
- \bullet How many square-roots are in \mathbb{QR}_{P}^* ?
 - Depends on P!
 - \circ e.g. $\mathbb{QR}_{13}^* = \{\pm 1, \pm 3, \pm 4\}$
 - 1,3,-4 have 2 square-roots each. But -1,-3,4 have none within \mathbb{QR}_{13}^*
 - ullet Since $-1 \in \mathbb{QR}_{13}^*$, $\mathbf{x} \in \mathbb{QR}_{13}^* \Rightarrow -\mathbf{x} \in \mathbb{QR}_{13}^*$
 - $\circ -1 \in \mathbb{QR}_{P}^*$ iff (P-1)/2 even

Square-roots in QRp*

- In \mathbb{Z}_P * √(x²) = ±x (i.e., x and -1·x)
- \odot If (P-1)/2 odd, squaring is a permutation in \mathbb{QR}_{P}^*

- But easy to compute both ways!
 - In fact $\sqrt{z} = z^{(P+1)/4} \in \mathbb{QR}_P^*$ (because (P+1)/2 even)
- Rabin function defined in \mathbb{QR}_N^* and relies on keeping the factorization of N=PQ hidden

QRN*

- \bullet What do elements in \mathbb{QR}_N^* look like, for N=PQ?
 - \bullet By CRT, can write $a \in \mathbb{Z}_N^*$ as $(x,y) \in \mathbb{Z}_P^* \times \mathbb{Z}_Q^*$
 - **⊘** CRT representation of a^2 is $(x^2,y^2) \in \mathbb{Q}\mathbb{R}_P^* \times \mathbb{Q}\mathbb{R}_Q^*$
 - \circ QR_N* \simeq QR_P* \times QR_Q*
 - If both P,Q≡3 (mod 4), then squaring is a permutation in QR_N^*

 - © Can efficiently do this, if can compute (and invert) the isomorphism from \mathbb{QR}_N^* to $\mathbb{QR}_P^* \times \mathbb{QR}_Q^*$
 - (P,Q) is a trapdoor
 - Without trapdoor, OWF candidate
 - Tollows from assuming squaring is a OWF over the domain \mathbb{Z}_N^* , because \mathbb{QR}_N^* forms $1/4^{th}$ of \mathbb{Z}_N^*

Rabin Function

- $f_{Rabin[N]}(x) = x^2 \mod N$
 - Candidate OWF collection, with N=PQ (P,Q random k-bit primes)
 - o If P, Q = 3 (mod 4), then, restricted to QR_N^* :
 - A permutation

Can sample efficiently by sampling $x \leftarrow \mathbb{Z}_N^*$, and outputting x^2

- Has a trapdoor for inverting (namely (P,Q))
- Candidate Trapdoor OWP

Summary

- A DLA candidate: Z_P*
- A DDH candidate: QRp^{*} where P is a safe prime
- Chinese Remainder Theorem
 - o $I_N \cong I_P \times I_Q$

 - $\overline{O} \mathbb{Q} \mathbb{R}_{N}^{*} \cong \mathbb{Q} \mathbb{R}_{P}^{*} \times \mathbb{Q} \mathbb{R}_{Q}^{*}$
- Trapdoor OWP candidates:
 - $f_{RSA[N,e]} = x^e \mod N$ where N=PQ and $gcd(e,\phi(N))=1$
 - Trapdoor: $(P,Q) \rightarrow \phi(N) \rightarrow d=e^{-1}$ in $\mathbb{Z}_{\phi(N)}^*$
- restricted to QRN*
- restricted $f_{Rabin[N]} = x^2 \mod N$ where N=PQ, where P,Q = 3 (mod 4)
 - Trapdoor: (P,Q)
 - Trapdoor OWP can be used to construct Trapdoor PRG
 - Trapdoor PRG can give IND-CPA secure PKE