Public-Key Cryptography Lecture 11 Some Trapdoor OWP Candidates Chinese Remainder Theorem RECALL # CPA-secure PKE for Trapdoor OWP - © CPA secure PKE from Trapdoor PRG - PRG family with a (PK,SK). PK specifies the family member. - © Can encapsulate the seed for the PRG such that: - PRG output remains pseudorandom even given PK and encapsulated seed - Can recover PRG output from encapsulated seed and SK - El Gamal: encapsulated seed = gx, PRG output = Yx - Trapdoor PRG from Trapdoor OWP Telephone T ## Candidate Trapdoor OWPs - Two candidates using composite moduli - © RSA function: $f_{RSA}(x; N,e) = x^e \mod N$ where N=PQ, P,Q k-bit primes, e s.t. $gcd(e,\phi(N)) = 1$ (and x uniform from $\{0...N-1\}$) - Fact: While picking (N,e), can also pick d s.t. xed = x - - Fact: $f_{Rabin}(.; N)$ is a permutation among quadratic residues, when P, Q are \equiv 3 (mod 4) - Fact: Can invert f_{Rabin}(.; N) given factorization of N ## ZN* - Group operation: "multiplication modulo N" - Has identity, is associative - Group elements: all numbers (mod N) which have a multiplicative inverse modulo N - e.g.: \mathbb{Z}_6^* has elements {1,5}, \mathbb{Z}_7^* has {1,2,3,4,5,6} - a has a multiplicative inverse modulo N - Extended Euclidean algorithm to find (b,d) given (a,N). Used to efficiently invert elements in \mathbb{Z}_N^* ## Zp*, P prime - Recall Zp* - O Cyclic: Isomorphic to ℤ_{P-1} - Discrete Log assumed to be hard - Quadratic Residues form a subgroup QRP* ## Z_N*, N=PQ, two primes - \circ e.g. $\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$ Also works with P, Q co-primes - Group operation and inverse efficiently computable - Cyclic? - No! In \mathbb{Z}_{15}^* , $2^4 = 4^2 = 7^4 = 8^4 = 11^2 = 13^4 = 14^2 = 1$ (i.e., each generates at most 4 elements, out of 8) - \circ "Product of two cycles": \mathbb{Z}_3 * and \mathbb{Z}_5 * - Chinese Remainder Theorem #### Chinese Remainder Theorem - \circ Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5 - ORT says that the pair (a mod 3, a mod 5) uniquely determines a (mod 15)! - All 15 possible pairs occur, once each - In general for N=PQ (P, Q relatively prime), a → (a mod P, a mod Q) maps the N elements to the N distinct pairs - In fact extends to product of more than two (relatively prime) numbers | Z 15 | \mathbb{Z}_3 | Z ₅ | |-------------|----------------|-----------------------| | 0 | 0 | 0 | | 1 | 1 | 1 | | 2 | 2 | 2 | | 3 | 0 | 3 | | 4 | 1 | 4 | | 5 | 2 | 0 | | 6
7 | 0 | 1 | | 7 | 1 | 2
3 | | 8 | 1
2 | 3 | | 9 | 0 | 4 | | 10 | 1 | 0 | | 11 | 2 | 1 | | 12 | 0 | 2 | | 13 | 1 | 3 | | 14 | 2 | 4 | ## Chinese Remainder Theorem and Z_N - © CRT representation of \mathbb{Z}_N : every element of \mathbb{Z}_N can be written as a unique element of $\mathbb{Z}_P \times \mathbb{Z}_Q$ - Addition can be done coordinate-wise - Can efficiently compute the isomorphism (in both directions) if P, Q known [Exercise] | \mathbb{Z}_{15} | \mathbb{Z}_3 | \mathcal{I}_5 | |-------------------|----------------|-----------------| | O | 0 | 0 | | 1 | 1 | 1 | | 2 | 2 | 2 | | 2
3
4 | 0 | 3 | | 4 | 1 | 4 | | 5 | 2 | 0 | | 6 | 0 | 1 | | 7 | 1 | 2 | | 8 | 2 | 3 | | 9 | 0 | 4 | | 10 | 1 | 0 | | 11 | 2 | 1 | | 12 | 0 | 2 | | 13 | 1 | 3 | | 14 | 2 | 4 | #### Chinese Remainder Theorem ### and \mathbb{Z}_N^* - - \odot Consider the same mapping into $\mathbb{Z}_P \times \mathbb{Z}_Q$ - Multiplication (and identity, and inverse) also coordinate-wise - No multiplicative inverse iff (0,b) or (a,0) | | | SEE CLUBA | |-------------|------------|------------| | Z 15 | Z 3 | Z 5 | | 0 | 0 | 0 | | 1 | 1 | 1 | | 2 | 2 | 2 | | 3 | 0 | 3 | | 4 | 1 | 4 | | 5 | 2 | 0 | | 6 | 0 | 1 | | 7 | 1 | 2 | | 8 | 2 | 3 | | 9 | 0 | 4 | | 10 | 1 | 0 | | 11 | 2 | 1 | | 12 | 0 | 2 | | 13 | 1 | 3
4 | | 14 | 2 | 4 | #### RSA Function - \circ $f_{RSA[N,e]}(x) = x^e \mod N$ - Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ $\mathbb{Z}_{φ(N)}^*$) - \circ $f_{RSA[N,e]}: I_N \rightarrow I_N$ - \bullet Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ - - In fact, there exists d s.t. f_{RSA[N,d]} is the inverse of f_{RSA[N,e]} - \odot d s.t. ed = 1 (mod $\phi(N)$) \Rightarrow x^{ed} = x (mod N) - Why? In \mathbb{Z}_N^* because order of \mathbb{Z}_N^* is $\phi(N)$ - In \mathbb{Z}_N too, by CRT: $\mathbb{Z}_N \cong \mathbb{Z}_P \times \mathbb{Z}_Q$ and $\Phi(N) = \Phi(P)\Phi(Q)$ - Exponentiation works coordinate-wise #### RSA Function - $f_{RSA[N,e]}(x) = x^e \mod N$ - Where N=PQ, and gcd(e,φ(N)) = 1 (i.e., e ∈ $\mathbb{Z}_{φ(N)}^*$) - oflet $f_{RSA[N,e]}: I_N \rightarrow I_N$ - Alternately, $f_{RSA[N,e]}$: Z_N^* → Z_N^* - RSA Assumption: $f_{RSA[N,e]}$ is a OWF collection, when P, Q random k-bit primes and e < N random number s.t. gcd(e,φ(N))=1 (with inputs uniformly from \mathbb{Z}_N or \mathbb{Z}_N^*) - Alternate version: e=3, P, Q restricted so that gcd(3, ϕ (N))=1 - RSA Assumption will be false if one can factorize N - Then knows $\phi(N) = (P-1)(Q-1)$ and can find d s.t. ed = 1 (mod $\phi(N)$) - Converse not known to hold - Trapdoor OWP Candidate #### Rabin Function - $f_{Rabin[N]}(x) = x^2 \mod N$ where N=PQ, P,Q primes = 3 mod 4 - Is a candidate OWF collection (indexed by N) - Equivalent to the assumption that f_{mult} is a OWF (for the appropriate distribution) - If can factor N, will see how to find square-roots - So (P,Q) a trapdoor to "invert" - Fact: If can take square-root mod N, can factor N - \circ Coming up: Is a permutation over \mathbb{QR}_N^* , with trapdoor (P,Q) ## Square-roots in \mathbb{Z}_{P}^{*} - What are the square-roots of x² mod a prime? - $0 \sqrt{1} = \pm 1$ $$\Rightarrow$$ (x+1)=0 or (x-1)=0 (mod P) \Leftrightarrow x=1 (mod P) or x=-1 (mod P) ## Square-roots in \mathbb{Z}_{P}^{*} - What are the square-roots of x² mod a prime? - $0 \sqrt{1} = \pm 1$ $$\Rightarrow$$ (x+1)=0 or (x-1)=0 (mod P) $$\Leftrightarrow$$ x=1 (mod P) or x=-1 (mod P) - More generally $\sqrt{(x^2)} = \pm x$ (because $x^2 = y^2$ (mod P) $\Leftrightarrow x = \pm y$) - \bullet -x = x·g^{(P-1)/2} appears "diametrically opposite" x ## Square-roots in QRp* - o In $\mathbb{Z}_{p}^{*} \sqrt{(x^2)} = \pm x$ - \bullet How many square-roots are in \mathbb{QR}_{P}^* ? - Depends on P! - \circ e.g. $\mathbb{QR}_{13}^* = \{\pm 1, \pm 3, \pm 4\}$ - 1,3,-4 have 2 square-roots each. But -1,-3,4 have none within \mathbb{QR}_{13}^* - ullet Since $-1 \in \mathbb{QR}_{13}^*$, $\mathbf{x} \in \mathbb{QR}_{13}^* \Rightarrow -\mathbf{x} \in \mathbb{QR}_{13}^*$ - $\circ -1 \in \mathbb{QR}_{P}^*$ iff (P-1)/2 even ## Square-roots in QRp* - In \mathbb{Z}_P * √(x²) = ±x (i.e., x and -1·x) - \odot If (P-1)/2 odd, squaring is a permutation in \mathbb{QR}_{P}^* - But easy to compute both ways! - In fact $\sqrt{z} = z^{(P+1)/4} \in \mathbb{QR}_P^*$ (because (P+1)/2 even) - Rabin function defined in \mathbb{QR}_N^* and relies on keeping the factorization of N=PQ hidden ## QRN* - \bullet What do elements in \mathbb{QR}_N^* look like, for N=PQ? - \bullet By CRT, can write $a \in \mathbb{Z}_N^*$ as $(x,y) \in \mathbb{Z}_P^* \times \mathbb{Z}_Q^*$ - **⊘** CRT representation of a^2 is $(x^2,y^2) \in \mathbb{Q}\mathbb{R}_P^* \times \mathbb{Q}\mathbb{R}_Q^*$ - \circ QR_N* \simeq QR_P* \times QR_Q* - If both P,Q≡3 (mod 4), then squaring is a permutation in QR_N^* - © Can efficiently do this, if can compute (and invert) the isomorphism from \mathbb{QR}_N^* to $\mathbb{QR}_P^* \times \mathbb{QR}_Q^*$ - (P,Q) is a trapdoor - Without trapdoor, OWF candidate - Tollows from assuming squaring is a OWF over the domain \mathbb{Z}_N^* , because \mathbb{QR}_N^* forms $1/4^{th}$ of \mathbb{Z}_N^* #### Rabin Function - $f_{Rabin[N]}(x) = x^2 \mod N$ - Candidate OWF collection, with N=PQ (P,Q random k-bit primes) - o If P, Q = 3 (mod 4), then, restricted to QR_N^* : - A permutation Can sample efficiently by sampling $x \leftarrow \mathbb{Z}_N^*$, and outputting x^2 - Has a trapdoor for inverting (namely (P,Q)) - Candidate Trapdoor OWP ### Summary - A DLA candidate: Z_P* - A DDH candidate: QRp^{*} where P is a safe prime - Chinese Remainder Theorem - o $I_N \cong I_P \times I_Q$ - $\overline{O} \mathbb{Q} \mathbb{R}_{N}^{*} \cong \mathbb{Q} \mathbb{R}_{P}^{*} \times \mathbb{Q} \mathbb{R}_{Q}^{*}$ - Trapdoor OWP candidates: - $f_{RSA[N,e]} = x^e \mod N$ where N=PQ and $gcd(e,\phi(N))=1$ - Trapdoor: $(P,Q) \rightarrow \phi(N) \rightarrow d=e^{-1}$ in $\mathbb{Z}_{\phi(N)}^*$ - restricted to QRN* - restricted $f_{Rabin[N]} = x^2 \mod N$ where N=PQ, where P,Q = 3 (mod 4) - Trapdoor: (P,Q) - Trapdoor OWP can be used to construct Trapdoor PRG - Trapdoor PRG can give IND-CPA secure PKE