Public-Key Cryptography

Lecture 11
Some Trapdoor OWP Candidates
Chinese Remainder Theorem
CPA-secure PKE for Trapdoor OWP

- CPA secure PKE from Trapdoor PRG
 - PRG family with a (PK,SK). PK specifies the family member.
 - Can encapsulate the seed for the PRG such that:
 - PRG output remains pseudorandom even given PK and encapsulated seed
 - Can recover PRG output from encapsulated seed and SK
- ElGamal: encapsulated seed = g^x, PRG output = Y^x
- Trapdoor PRG from Trapdoor OWP
Candidate Trapdoor OWPs

Two candidates using composite moduli

RSA function: \(f_{\text{RSA}}(x; N, e) = x^e \mod N \) where \(N = PQ \), \(P, Q \) k-bit primes, \(e \) s.t. \(\gcd(e, \phi(N)) = 1 \) (and \(x \) uniform from \(\{0...N-1\} \))

Fact: \(f_{\text{RSA}}(.; N, e) \) is a permutation

Fact: While picking \((N, e)\), can also pick \(d \) s.t. \(x^{ed} = x \)

Rabin OWF: \(f_{\text{Rabin}}(x; N) = x^2 \mod N \), where \(N = PQ \), and \(P, Q \) are k-bit primes (and \(x \) uniform from \(\{0...N-1\} \))

Fact: \(f_{\text{Rabin}}(.; N) \) is a permutation among quadratic residues, when \(P, Q \) are \(\equiv 3 \pmod{4} \)

Fact: Can invert \(f_{\text{Rabin}}(.; N) \) given factorization of \(N \)
Group operation: "multiplication modulo $N"$

Has identity, is associative

Group elements: all numbers (mod N) which have a multiplicative inverse modulo N

e.g.: \mathbb{Z}_6^* has elements $\{1,5\}$, \mathbb{Z}_7^* has $\{1,2,3,4,5,6\}$

a has a multiplicative inverse modulo N

$\iff \exists$ integers b, c s.t. $ab = 1+cN$

$\iff \gcd(a,N)=1$ \[\text{[Why?]}\]

$(\Rightarrow) \ \gcd(a,N) \mid (ab-cN)$

(\Leftarrow) from Euclid's algorithm: $\exists b$, d s.t. $\gcd(a,N) = ab+dN$

$|\mathbb{Z}_N^*| = \#\text{integers in } [1,N-1] \text{ co-prime with } N = \phi(N)$
Recall \mathbb{Z}_p^*

$|\mathbb{Z}_p^*| = \phi(P) = P-1$ (all of them co-prime with P)

Cyclic: Isomorphic to \mathbb{Z}_{p-1}

Discrete Log assumed to be hard

Quadratic Residues form a subgroup \mathbb{QR}_p^*

\mathbb{QR}_p^* is a candidate group for DDH assumption
\mathbb{Z}_N^*, $N=PQ$, two primes

e.g. $\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$

$\phi(15) = 8$

Group operation and inverse efficiently computable

Cyclic?

No! In \mathbb{Z}_{15}^*, $2^4 = 4^2 = 7^4 = 8^4 = 11^2 = 13^4 = 14^2 = 1$

(i.e., each generates at most 4 elements, out of 8)

“Product of two cycles”: \mathbb{Z}_3^* and \mathbb{Z}_5^*

Chinese Remainder Theorem
Chinese Remainder Theorem

Consider mapping elements in \(\mathbb{Z}_{15} \) (all 15 of them) to \(\mathbb{Z}_3 \) and \(\mathbb{Z}_5 \)

\[a \mapsto (a \mod 3, a \mod 5) \]

CRT says that the pair \((a \mod 3, a \mod 5) \) uniquely determines \(a \pmod{15} \)!

All 15 possible pairs occur, once each

In general for \(N= PQ \) (\(P, Q \) relatively prime), \(a \mapsto (a \mod P, a \mod Q) \) maps the \(N \) elements to the \(N \) distinct pairs

In fact extends to product of more than two (relatively prime) numbers
Chinese Remainder Theorem and \mathbb{Z}_N

- CRT representation of \mathbb{Z}_N: every element of \mathbb{Z}_N can be written as a unique element of $\mathbb{Z}_P \times \mathbb{Z}_Q$.
- Addition can be done coordinate-wise:
 \[(a,b) +_{\text{mod } N} (a',b') = (a +_{\text{mod } P} a',b +_{\text{mod } Q} b')\]
- CRT: $\mathbb{Z}_N \cong \mathbb{Z}_P \times \mathbb{Z}_Q$ (group isomorphism).
- Can efficiently compute the isomorphism (in both directions) if P, Q known [Exercise]

\[
\begin{array}{|c|c|c|}
\hline
\mathbb{Z}_{15} & \mathbb{Z}_3 & \mathbb{Z}_5 \\
\hline
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 0 & 3 \\
4 & 1 & 4 \\
5 & 2 & 0 \\
6 & 0 & 1 \\
7 & 1 & 2 \\
8 & 2 & 3 \\
9 & 0 & 4 \\
10 & 1 & 0 \\
11 & 2 & 1 \\
12 & 0 & 2 \\
13 & 1 & 3 \\
14 & 2 & 4 \\
\hline
\end{array}
\]
Chinese Remainder Theorem and \(\mathbb{Z}_N^* \)

- Elements in \(\mathbb{Z}_N^* \)
 - Consider the same mapping into \(\mathbb{Z}_P \times \mathbb{Z}_Q \)
 - Multiplication (and identity, and inverse) also coordinate-wise
 - No multiplicative inverse iff (0,b) or (a,0)
 - Else in \(\mathbb{Z}_N^* \): i.e., (a,b) s.t. \(a \in \mathbb{Z}_P^* \), \(b \in \mathbb{Z}_Q^* \)

- \(\mathbb{Z}_N^* \cong \mathbb{Z}_P^* \times \mathbb{Z}_Q^* \)

- \(\phi(N) = |\mathbb{Z}_N^*| = (P-1)(Q-1) \) (P\(\neq Q\), primes)

\[
\begin{array}{|c|c|c|}
\hline
\mathbb{Z}_{15} & \mathbb{Z}_3 & \mathbb{Z}_5 \\
\hline
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 0 & 3 \\
4 & 1 & 4 \\
5 & 2 & 0 \\
6 & 0 & 1 \\
7 & 1 & 2 \\
8 & 2 & 3 \\
9 & 0 & 4 \\
10 & 1 & 0 \\
11 & 2 & 1 \\
12 & 0 & 2 \\
13 & 1 & 3 \\
14 & 2 & 4 \\
\hline
\end{array}
\]
RSA Function

\[f_{RSA[N,e]}(x) = x^e \mod N \]

Where \(N = PQ \), and \(\gcd(e, \phi(N)) = 1 \) (i.e., \(e \in \mathbb{Z}_{\phi(N)}^* \))

\[f_{RSA[N,e]} : \mathbb{Z}_N \rightarrow \mathbb{Z}_N \]

Alternately, \(f_{RSA[N,e]} : \mathbb{Z}_N^* \rightarrow \mathbb{Z}_N^* \)

\(f_{RSA[N,e]} \) is a permutation over \(\mathbb{Z}_N \) with a trapdoor (namely \((N,d) \))

In fact, there exists \(d \) s.t. \(f_{RSA[N,d]} \) is the inverse of \(f_{RSA[N,e]} \)

\[d \text{ s.t. } ed \equiv 1 \pmod{\phi(N)} \Rightarrow x^{ed} \equiv x \pmod{N} \]

Why? In \(\mathbb{Z}_N^* \) because order of \(\mathbb{Z}_N^* \) is \(\phi(N) \)

In \(\mathbb{Z}_N \) too, by CRT: \(\mathbb{Z}_N \cong \mathbb{Z}_P \times \mathbb{Z}_Q \) and \(\phi(N) = \phi(P)\phi(Q) \)

Exponentiation works coordinate-wise

\[ed \equiv 1 \pmod{\phi(N)} \Rightarrow ed \equiv 1 \pmod{\phi(P)} \text{ and } ed \equiv 1 \pmod{\phi(Q)} \]
RSA Function

\[f_{RSA[N,e]}(x) = x^e \mod N \]

Where \(N = PQ \), and \(\gcd(e,\phi(N)) = 1 \) (i.e., \(e \in \mathbb{Z}_{\phi(N)^*} \))

\[f_{RSA[N,e]}: \mathbb{Z}_N \rightarrow \mathbb{Z}_N \]

Alternately, \(f_{RSA[N,e]}: \mathbb{Z}_N^* \rightarrow \mathbb{Z}_N^* \)

\(f_{RSA[N,e]} \) is a permutation over \(\mathbb{Z}_N \) with a trapdoor (namely \((N,d)\))

RSA Assumption: \(f_{RSA[N,e]} \) is a OWF collection, when \(P, Q \) random \(k \)-bit primes and \(e < N \) random number s.t. \(\gcd(e,\phi(N)) = 1 \) (with inputs uniformly from \(\mathbb{Z}_N \) or \(\mathbb{Z}_N^* \))

Alternate version: \(e=3 \), \(P, Q \) restricted so that \(\gcd(3,\phi(N)) = 1 \)

RSA Assumption will be false if one can factorize \(N \)

Then knows \(\phi(N) = (P-1)(Q-1) \) and can find \(d \) s.t. \(ed \equiv 1 \) (mod \(\phi(N) \))

Converse not known to hold

Trapdoor OWP Candidate
Rabin Function

\[f_{\text{Rabin}[N]}(x) = x^2 \mod N \text{ where } N = PQ, \ P, Q \text{ primes } \equiv 3 \mod 4 \]

Is a candidate OWF collection (indexed by N)

Equivalent to the assumption that \(f_{\text{mult}} \) is a OWF (for the appropriate distribution)

If can factor N, will see how to find square-roots

So (P,Q) a trapdoor to “invert”

Fact: If can take square-root mod N, can factor N

Coming up: Is a permutation over \(\mathbb{QR}_N^* \), with trapdoor (P,Q)
What are the square-roots of \(x^2 \) mod a prime?

\[\sqrt{1} = \pm 1 \]

\[x^2 = 1 \pmod{P} \iff (x+1)(x-1) = 0 \pmod{P} \]

\[\iff (x+1) = 0 \text{ or } (x-1) = 0 \pmod{P} \]

\[\iff x = 1 \pmod{P} \text{ or } x = -1 \pmod{P} \]

Where \(-1 = g^{(P-1)/2}\)

More generally, \(\sqrt{x^2} = \pm x \) (because \(x^2 = y^2 \pmod{P} \iff x = \pm y \))
Square-roots in \mathbb{Z}_P^*

What are the square-roots of $x^2 \mod a$ prime?

- $\sqrt{1} = \pm 1$

- $x^2 = 1 \pmod{P} \iff (x+1)(x-1) = 0 \pmod{P}$

 $\iff (x+1)=0$ or $(x-1)=0 \pmod{P}$

 $\iff x=1 \pmod{P}$ or $x=-1 \pmod{P}$

Where $-1 = g^{(P-1)/2}$

More generally $\sqrt{(x^2)} = \pm x$ (because $x^2 = y^2 \pmod{P} \iff x = \pm y$)

$-x = x \cdot g^{(P-1)/2}$ appears “diametrically opposite” x
Square-roots in \mathbb{QR}_p^*

- In \mathbb{Z}_p^*, $\sqrt{(x^2)} = \pm x$

- How many square-roots are in \mathbb{QR}_p^*?
 - Depends on p!
 - e.g. $\mathbb{QR}_{13}^* = \{\pm1, \pm3, \pm4\}$
 - 1, 3, -4 have 2 square-roots each. But -1, -3, 4 have none within \mathbb{QR}_{13}^*
 - Since $-1 \in \mathbb{QR}_{13}^*$, $x \in \mathbb{QR}_{13}^* \Rightarrow -x \in \mathbb{QR}_{13}^*$
 - $-1 \in \mathbb{QR}_p^*$ iff $(p-1)/2$ even

- If $(p-1)/2$ odd, exactly one of $\pm x$ in \mathbb{QR}_p^* (for all x)

- Then, squaring is a permutation in \mathbb{QR}_p^*
Square-roots in \mathbb{QR}_p^*

- In \mathbb{Z}_p^* $\sqrt{(x^2)} = \pm x$ (i.e., x and $-1 \cdot x$)

- If $(P-1)/2$ odd, squaring is a permutation in \mathbb{QR}_p^*

- $(P-1)/2$ odd $\iff P \equiv 3 \pmod{4}$

- But easy to compute both ways!

- In fact $\sqrt{z} = z^{(P+1)/4} \in \mathbb{QR}_p^*$ (because $(P+1)/2$ even)

- Rabin function defined in \mathbb{QR}_N^* and relies on keeping the factorization of $N=PQ$ hidden
What do elements in \mathbb{QR}_N^* look like, for $N=PQ$?

By CRT, can write $a \in \mathbb{Z}_N^*$ as $(x,y) \in \mathbb{Z}_P^* \times \mathbb{Z}_Q^*$

CRT representation of a^2 is $(x^2,y^2) \in \mathbb{QR}_P^* \times \mathbb{QR}_Q^*$

$\mathbb{QR}_N^* = \mathbb{QR}_P^* \times \mathbb{QR}_Q^*$

If both $P,Q \equiv 3 \pmod{4}$, then squaring is a permutation in \mathbb{QR}_N^*

$\sqrt{(x^2,y^2)} = (\pm x,\pm y)$ in $\mathbb{Z}_P^* \times \mathbb{Z}_Q^*$ but exactly one in $\mathbb{QR}_P^* \times \mathbb{QR}_Q^*$

Can efficiently do this, if can compute (and invert) the isomorphism from \mathbb{QR}_N^* to $\mathbb{QR}_P^* \times \mathbb{QR}_Q^*$

(P,Q) is a trapdoor

Without trapdoor, OWF candidate

Follows from assuming squaring is a OWF over the domain \mathbb{Z}_N^*, because \mathbb{QR}_N^* forms 1/4th of \mathbb{Z}_N^*
Rabin Function

\[f_{\text{Rabin}[N]}(x) = x^2 \mod N \]

Candidate OWF collection, with \(N=\text{PQ} \) (\(\text{P,Q} \) random \(k \)-bit primes)

If \(\text{P, Q} \equiv 3 \mod 4 \), then, restricted to \(\text{QR}_N^* \):

- A permutation
- Has a trapdoor for inverting (namely \((\text{P,Q}) \))

Candidate Trapdoor OWP

Can sample efficiently by sampling
\[x \leftarrow \mathbb{Z}_N^*, \text{ and outputting } x^2 \]
A DLA candidate: \mathbb{Z}_p^*

A DDH candidate: \mathbb{QR}_p^* where P is a safe prime

Chinese Remainder Theorem

- $\mathbb{Z}_N \cong \mathbb{Z}_p \times \mathbb{Z}_q$
- $\mathbb{Z}_N^* \cong \mathbb{Z}_p^* \times \mathbb{Z}_q^*$
- $\mathbb{QR}_N^* \cong \mathbb{QR}_p^* \times \mathbb{QR}_q^*$

Trapdoor OWP candidates:

- $f_{\text{RSA}[N,e]} = x^e \mod N$ where $N=PxQ$ and $\gcd(e,\phi(N))=1$
 - Trapdoor: $(P,Q) \rightarrow \phi(N) \rightarrow d=e^{-1}$ in $\mathbb{Z}_{\phi(N)}^*$
- $f_{\text{Rabin}[N]} = x^2 \mod N$ where $N=PxQ$, where $P,Q \equiv 3 \pmod{4}$
 - Trapdoor: (P,Q)

Trapdoor OWP can be used to construct Trapdoor PRG

Trapdoor PRG can give IND-CPA secure PKE