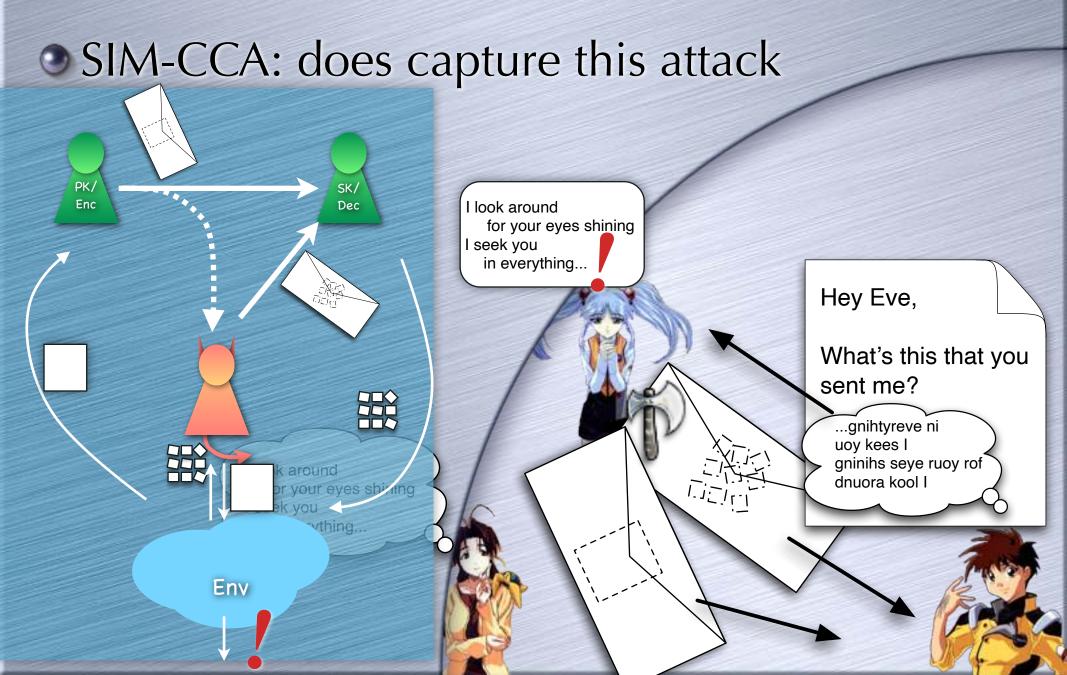

Public-Key Cryptography

Lecture 12 CCA Secure PKE Hybrid Encryption

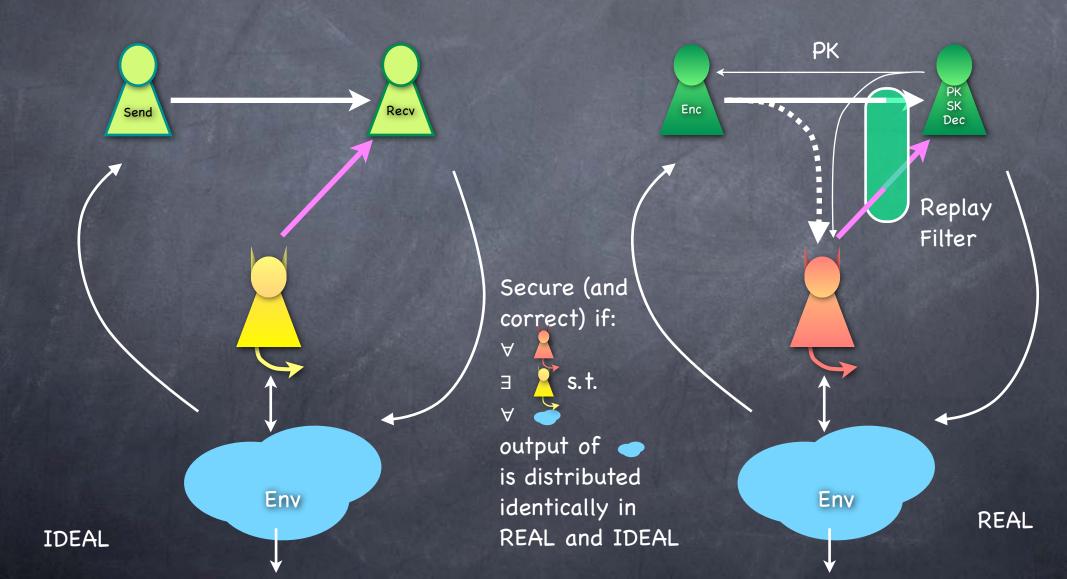
CCA Secure PKE

- In SKE, to get CCA security, we used a MAC
 - Bob would accept only messages from Alice
- But in PKE, Bob <u>wants to</u> receive messages from Eve as well!
 - But only if it is indeed Eve's "own message": she should "know" her own message!

Chosen Ciphertext Attack


Malleability

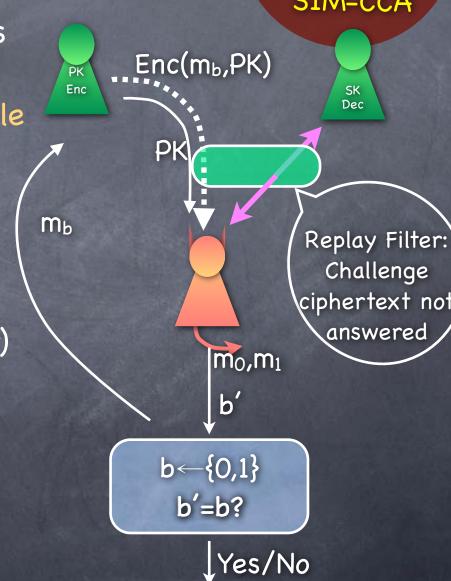
Malleability: Eve can "malleate" a ciphertext (without having to decrypt it) to produce a new ciphertext that would decrypt to a "related" message
More subtly, the 1 bit - valid or invalid -


may leak information on message or SK

- E.g.: Malleability of El Gamal
 - Recall: $Enc_{(G,g,Y)}(m) = (g^{\times},M.Y^{\times})$
 - Given (X,C) change it to (X,TC): will decrypt to TM
 - Or change (X,C) to (Xa,Ca): will decrypt to Ma
- If chosen-ciphertext attack possible
 - o i.e., Eve can get a ciphertext of her choice decrypted
 - Then Eve can exploit malleability to learn something "related to" Alice's messages

Chosen Ciphertext Attack

SIM-CCA Security (PKE)



IND-CCA (PKE versio

IND-CCA + correctness equivalent to SIM-CCA

Expt picks a random bit b. It also runs KeyGen to get a key (PK,SK). Adv gets PK and (guarded) access to Decsk oracle

- Adv sends two messages m₀, m₁ to Expt
- Expt returns Enc(m_b,K) to the adversary (and installs replay filter)
- Adversary returns a guess b'
- Experiment outputs 1 iff b'=b
- adversaries Pr[b'=b] 1/2 ≤ √(k)

CCA Secure PKE Schemes

- Several schemes in the heuristic "Random Oracle Model"
 - RSA-OAEP
 - Fujisaki-Okamoto
 - DHIES (doesn't need the full power of ROM)
- Cramer-Shoup Encryption: Provably secure CCA scheme, under DDH assumption (next time)
- Hybrid Encryption schemes: Improving the efficiency of PKE

Random Oracle Model

- Random Oracle: a mythical oracle that, when initialized, picks a random function $R:\{0,1\}^* \rightarrow \{0,1\}^{n(k)}$ and when queried with x, returns R(x)
 - All parties have access to the same RO
- In ROM, evaluating some "hash function" H would be modeled as accessing an RO
 - Hope: the code for H has "no simple structure" and only way to get anything useful from it is to evaluate it on an input
- Sometimes security definitions need to be adapted for ROM
- Rigorous proofs of security, <u>after</u> moving to the ROM

Random Oracle Model

- There is no Pseudo-RO
 - Unlike PRF, RO must be locally evaluable for all parties. (think: giving out the seed of a PRF)
- There are schemes secure in ROM, such that for any instantiation of the RO, the scheme is insecure!
 - Also natural <u>constructs/primitives</u> which are realizable in ROM, but not in the standard model!
- What does a proof in ROM tell us?
 - Secure against attacks that treat H as a blackbox (and for which H is pseudorandom)

RSA-OAEP

RSA-OAEP

- "Text-book RSA encryption" (i.e., f_{RSA}, the Trapdoor OWP candidate) applied to an "encoding" of the message
 - Encoding is randomized
 - Encoding uses a hash function modeled as a Random Oracle
 - Security in the RO Model, assuming fread a OWP
- Part of RSA Cryptography Standard (PKCS#1 Ver 2.1).
 Commonly used in SSL/TLS implementations

Hybrid Encryption

- PKE is far less efficient compared to SKE (even in ROM)
 - SKE using Block Ciphers (e.g. AES) and MAC is very fast
 - RSA-OAEP uses modular exponentiations (Cramer-Shoup even more)
- Hybrid encryption: Use (CCA secure) PKE to transfer a key for the (CCA secure) SKE. Use SKE with this key for sending data
 - Hopefully the combination remains CCA secure
 - Note: PKE used to encrypt only a (short) key for the SKE
 - Relatively low overhead on top of the (fast) SKE encryption

Hybrid Encryption

or to generate a key

- Hybrid Encryption: KEM/DEM paradigm
 - Key Encapsulation Method: a public-key scheme to transfer a key
 - Data Encapsulation Method: a symmetric-key scheme (using the key transferred using KEM)
- For what KEM/DEM is a hybrid encryption scheme CCA secure?
 - Works if KEM is a SIM-CCA secure PKE scheme and DEM is a SIM-CCA secure SKE scheme
 - Easy to prove using "composition" properties of the SIM definition
 - Less security sufficient: KEM used to transfer a random key;
 DEM uses a new key every time.

Another PKE Scheme: CCA Secure in RO Model

- Fujisaki-Okamoto Hybrid scheme
 - KEM "encrypts" random x, using random coins derived as H(m,x), where m is the message and H a random oracle
 - DEM "encrypts" m with key K = G(x), where G is another random oracle
 - Decryption decrypts x, then m, and then checks if KEM was correct
 - Very weak security sufficient for encryptions used in KEM and DEM (but only with H, G modelled as random oracles)

Another CCA Secure PKE: DHIES

- Diffie-Hellman Integrated Encryption Scheme
 - Part of some standards
- Essentially a hybrid scheme
 - Data Encapsulation: CPA secure SKE, and MAC
 - We key Encapsulation: $X=g^x$. Let $K=Y^x$, where Y is the PK (as in El Gamal), and $(K_{SKE},K_{MAC}) = Hash(K)$ (where $K=Y^x=X^y$)
- CCA secure if Hash is modelled as a Random Oracle
 - Alternately, in the standard model, can be based on a complex (non-standard) assumption involving Hash and the group: "Oracle Diffie-Hellman Assumption"