Public-Key Cryptography

Lecture 13 CCA Security (ctd.)

SIM-CCA Security (PKE)

CCA Secure PKE

RECALL

In SKE, to get CCA security, we used a MAC
Bob would accept only messages from Alice
But in PKE, Bob <u>wants to</u> receive messages from Eve as well!

But only if it is indeed Eve's own message: she should know her own message!

CCA Secure PKE Schemes

Several schemes in the heuristic "Random Oracle Model"

RSA-OAEP

Fujisaki-Okamoto

OHIES (doesn't need the full power of ROM)

Hybrid Encryption schemes: Improving the efficiency of PKE

Today: Cramer-Shoup Encryption: A provably secure CCA scheme, under DDH assumption

CCA Secure PKE: Cramer-Shoup

- El Gamal-like: Based on DDH assumption
- $_{\odot}$ Uses a prime-order group (e.g., \mathbb{QR}_{p}^{*} for safe prime p)

H a "collision-resistant hash function" (Later) \odot C = (g₁×, g₂×, MY×) and S = (WZ^{H(C)})× Prime order group \Rightarrow all non-id g1, g2, Y, W, Z are part of PK elements are generators \bigcirc g₁, g₂ random generators, Y=g₁y₁ g₂y₂, W=g₁w₁ g₂w₂, Z=g₁z₁ g₂z₂ SK contains (y₁, y₂, w₁, w₂, z₁, z₂) -Multiple SKs can explain the same PK Trapdoor: Using SK, and (g1×,g2×) can find Y×, W×, Z× (unlike El Gamal) • If $a = g_1 \times and b = g_2 \times Y \times a_{y_1} b_{y_2}, W \times a_{w_1} b_{w_2}, Z \times a_{x_1} b_{x_2}$ Decryption: Compute Y[×], W[×], Z[×] from C using SK. Check S and extract M.

Proof Outline

- A "hybrid" where an "invalid encryption" is used for challenge:
 - Indistinguishable from valid encryption, under DDH assumption
 - It contains no information about the message (given just PK)
- But CCA adversary is not just given PK. Could she get information about the specific SK from decryption queries?
 - By querying decryption with only valid ciphertexts, adversary gets no information about SK (beyond given by PK)
 - Adversary can't create <u>new</u> "invalid ciphertexts" that get past the integrity check (except with negligible probability)
 - Relies on <u>collision-resistance</u> of H (used for efficiency)

Can replace H with an injective mapping to a <u>pair</u> of exponents, if longer keys and ciphertext can be used. But anyway DDH yields collision-resistance hash (later).

Proof: Hybrid is Indistinguishable

 \odot C = (g₁×, g₂×, MY×) and S = (WZ^{H(C)})×

• Y = $g_1^{y_1} g_2^{y_2}$, W = $g_1^{w_1} g_2^{w_2}$, Z = $g_1^{z_1} g_2^{z_2}$

Hybrid experiment: Like IND-CCA experiment, but the challenge ciphertext is prepared from random $g_1^{x_1}$ and $g_2^{x_2}$ and "Yx, Wx, Zx" computed using SK With 1-negl probability, x1+x2 • Let $a = g_1 x_1$, $b = g_2 x_2$. "Yx" = $a^{y_1} b^{y_2}$, "Wx" = $a^{w_1} b^{w_2}$, "Zx" = $a^{z_1} b^{z_2}$ Indistinguishable from real experiment, by DDH (even given SK) 𝔅 (g₁, g₁×₁, g₂, g₂×₂) where g₁,g₂ random generators (i.e., random, ≠1): If x_1 , x_2 random, then (g, g^x , g^y , g^z) for random g,x,y,z. If $x_1 = x_2 = x$, random, then (g, g^x , g^y , g^{xy}) for random g,x,y. By DDH the two cases are indistinguishable (even given SK)

Proof: Hybrid has no Information

- \odot C = (g₁×, g₂×, MY×) and S = (WZ^{H(C)})×
- Invalid ciphertext uses $x_1 \neq x_2$ and "Y×, W×, Z×" computed using SK
- For invalid ciphertext, values of "Y×, W×, Z×" will depend on the SK, and not just PK
 - e.g. " $Y^{x''} = a^{y_1}b^{y_2} = g_1^{(x_1-x_2)y_1} \cdot Y^{x_2}$ varies with SK if $x_1 \neq x_2$
 - Even if Y, x_1 , x_2 are given, $g_1^{(x_1-x_2)y_1}$ is uniformly random
 - So an invalid challenge ciphertext (created using SK) is independent of the message, as "Y×" is a one-time pad

Recall, only one challenge ciphertext in the IND-CCA experiment for PKE

Proof: Hybrid has no Information

- Remains to show that adversary (almost) never learns anything beyond PK about the keys
 - By querying decryption with only valid ciphertexts, adversary gets no information about SK beyond given by PK (decryption can be information-theoretically carried out using PK alone)
 - Adversary can't create <u>new</u> "invalid ciphertexts" that get past the integrity check (except with negligible probability)

Coming up Any invalid ciphertext with a <u>new</u> H(C) can fool at most a negligible fraction of the possible SKs: so the probability of adversary fooling the specific one used is negligible

- <u>Collision-resistance</u> of $H \Rightarrow$ same H(C) requires same C
- And, same C requires same (C,S), since S is a deterministic function of C

Proof: Invalid Ciphertexts Get Caught

- Claim: Even a computationally unbounded adversary can't create "invalid ciphertexts" (i.e., with x₁≠x₂) with H(C) different from that of the (invalid) challenge ciphertext, and get past the integrity check (except with negligible probability)
 - Working with exponents to the base g_1 : let $g_2 = g_1^{\alpha}$, where $\alpha \neq 0$
 - Public key has: (α, y, w, z) , where $y = y_1 + \alpha y_2$, $w = w_1 + \alpha w_2$, $z = z_1 + \alpha z_2$
 - Challenge ciphertext for message $M=g_1^{\mu}$ consists of x_1 , αx_2 ,

 $c = \mu + x_1 \cdot y_1 + \alpha \cdot x_2 \cdot y_2, s = (w_1 + \beta z_1) x_1 + \alpha (w_2 + \beta z_2) x_2,$

where $\beta = H((g_1 \times 1, g_1 \times 2, g_1))$

- Claim: adversary can't find (x'_1, x'_2, β', s') with $x'_1 \neq x'_2$ and $\beta' \neq \beta$ and $s' = (w_1 + \beta' z_1)x'_1 + \alpha(w_2 + \beta' z_2)x'_2$
 - $s = (w+\beta z)x_1 + \alpha(w_2+\beta z_2)(x_2-x_1)$, where $x_2-x_1 \neq 0$.

So suppose we give $\gamma = (w_2 + \beta z_2)$ to the adversary (and w,z, μ ,y₁,y₂).

- Need s' = $(w+\beta'z)x'_1 + \alpha\gamma(x_2-x_1) + \alpha(\beta'-\beta)z_2(x_2-x_1)$
- But z_2 is random (given the 3 linear equations for w, z, γ for the 4 variables {w_i, $z_i \mid i \in \{1,2\}$ }), and hence there is negligible probability that candidate s' given by the adversary will be correct

CCA secure PKE

Cramer-Shoup Encryption

Next up: Hash functions, Digital Signatures