

Some Project Ideas

@ Read & Write about something not covered in class
@ Constructions: e.g., CCA secure PKE schemes, lattice-based PKE,
more block-cipher modes, ...
@ Concepts: e.g., Key management, Double-Ratcheting, Searchable
Encryption, Onion Routing/Mix-Nets, Homomorphic Encryption, ...
@ Proofs: e.g., Goldreich-Levin predicate, Fujisaki-Okamoto,
security of TLS,...
@ Implementation project
@ Make something
@ Slow and secure crypto (e.g., SKE and/or Digital Signatures
from OWP, full-domain CRHF from DL,...)
@ Higher-level applications (e.g., "simple-TLS", Off-the-record
messaging, things you can do with a block-cipher...)
@ A library with a cleaner API for encryption/authentication
@ Break something
@ e.g., use a constraint-solver to break (broken) block-ciphers

Hash Functions

Lecture 14
Flavours of collision resistance

A Tale of Two Boxes

@ The bulk of today's applied cryptography works with two

magic boxes

@ Block Ciphers _}’ .
® Hash Functions

@ Block Ciphers: Best modeled as (strong) Pseudorandom

Permutations, with inversion trapdoors

@ Often more than needed (e.g. SKE needs only PRF)
® Hash Functions:
@ Some times modelled as Random Oracles!
@ Use at your own risk! No guarantees in the standard model.

@ Today: understanding security requirements on hash functions

Hash Functions

@ "Randomised” mapping of inputs to shorter hash-values
@ Hash functions are useful in various places
@ In data-structures: for efficiency
@ Intuition: hashing removes worst-case effects
@ In cryptography: for “integrity”

@ Primary use: Domain extension (compress long inputs, and
feed them into boxes that can take only short inputs)

@ Typical security requirement: “collision resistance”
@ Different flavours: some imply one-wayness

@ Also sometimes: some kind of unpredictability

Hash Function Family

@ Hash function h:{0,1}n(k—{0,1}t(k)
@ Compresses

@ A family
@ Alternately, takes two inpufs,
the index of the member of the
family, and the real input

@ Efficient sampling and evaluation

@ Idea: when the hash function is
randomly chosen, “behaves
randomly”

@ Main goal: to “avoid collisions”.
Will see several variants of the
problem

x| hi(x) [ha(x) [h3(x) | ha(x)
000| O 0] 0 |
ool O 0] | 1
Ol0| O 1 0 1
Ol1 | O | 1 0
100 1 0 0 |
101 | 0] 1 0]
110 | | 0 |
111 | 1 | 0]

Hash Functions in Crypto
Practice

@ A single fixed function
o e.g. SHA-3, SHA-256, SHA-1, MD5, MD4
@ Not a family (“unkeyed”)
@ (And no security parameter knob)
@ Not collision-resistant under any of the following definitions

@ Alternately, could be considered as having already been randomly
chosen from a family (and security parameter fixed too)

@ Usually involves hand-picked values (e.g. “"LV." or “round
constants”) built into the standard

Degrees of
Collision-Resistance

@ If for all PPT A, Prix#y and h(x)=h(y)] is negligible in the
following experiment:

@ A—(x,y); h<# : Combinatorial Hash Functions (even non-PPT A)
@ A—x; h<—#; A(h)—y : Universal One-Way Hash Functions
@ h<—#; A(h)—(x,y) : Collision-Resistant Hash Functions

® CRHF the strongest; UOWHF still powerful (will be enough for
digital signatures)

@ Useful variants: A gets only oracle access to h(-) (weaker).
Or, A gets any coins used for sampling h (stronger).

Degrees of
Collision-Resistance

® Variants of CRHF/UOWHF where x is random

Hash Function

@ h<—#; x<—X; A(h,h(x))—y (y=x allowed) % SH O

@ Pre-image collision resistance if h(x)=h(y) w.n.p
@ i.e., f(h,x) := (h,h(x)) is a OWF (and h compresses)
@ h—#; x<—X; A(h,x)—y (y#x)
@ Second Pre-image collision resistance if h(x)=h(y) w.n.p
@ Incomparable (neither implies the other) [Exercise]

® CRHF implies second pre-image collision resistance and, if
compressing, then pre-image collision resistance [Exercise]

Hash Length

@ If range of the hash function is too small, not collision-resistant

@ If range poly(k)-size (i.e. hash is logarithmically long), then
non-negligible probability that two random x, y provide collision

@ In practice interested in minimising the hash length (for efficiency)
@ Generic attack on a CRHF: birthday attack

@ Look for a collision in a set of random inputs (needs only
oracle access to the hash function)

@ Expected size of the set before collision: O(«Irangel)

@ Birthday attack effectively halves the security (hash length) of
a CRHF compared fo a generic attack on UOWHF

Universal Hashing

® Combinatorial HF: A—(x,y); h<—#. h(x)=h(y) w.n.p

@ Even better: 2-Universal Hash Functions x | hi(x) [ha(x)| hs(x)| ha(x)

@ "Uniform” and “Pairwise-independent” ololol 1]

@ vx,z Prrz [h(x)=z] = 1/1Z| (where h:X—Z) S|

@ VxEyW,z Pri_g [h(x)=w, h(y)=z] =

Pro-s [h(x)=w] - Pros [h(y)=z] 8 1 |o|o |1

@ = vx#y Praa [h(x)=h(y)] = 1//Z] <(Negligible collision-probability if
@& k-Universal: super-polynomial-sized range
' \

@ vxi.xk (distinct), zi..zx, Prana [Vi h(x))=z;] = 1/|zZ]k
@ Inefficient example: & set of all functions from X o Z

@ But we will need all he#d to be succinctly described and
efficiently evaluable

Universal Hashing

® Combinatorial HF: A—(x,y); h<—#. h(x)=h(y) w.n.p

@ Even better: 2-Universal Hash Functions x | hi(x) [ha(x)| hs(x)| ha(x)

@ "Uniform” and “Pairwise-independent”

@ Vvx#y,w,z Pri—a [h(X)=w, h(y)=z] = 1/]Z|2

@ = vxzy Prn—u [h(x)=h(y)] = 1/IZ|

@ e.g. hap(x) = ax+b (in a finite field, X=Z)

Negligible collision-probability if
super-polynomial-sized range

® Prap [ax+b =2] =Prap [b = z-ax] = 1/1Z]

@ Uniform

® Prop [ax+b = w, ay+b = z] = ? Exactly one (a,b) satisfying the
two equations (for x#y)

@ Prop [ax+b = w, ay+b = Z] = 1/]Z]2

@ But does not compress!

Universal Hashing

® Combinatorial HF: A—(x,y); h<—#. h(x)=h(y) w.n.p

@ Even better: 2-Universal Hash Functions x | hi(x)[ha(x)|hs(x)

ha4(x)

@ "Uniform” and “Pairwise-independent” ololol 1

@ Vvx#y,w,z Pri—a [h(X)=w, h(y)=z] = 1/]Z|2

@ = vxzy Prn—u [h(x)=h(y)] = 1/IZ|

@ e.g. Chop(h(x)) where

@ h from a (possibly non-compressing)
2-universal HF

Negligible collision-probability if
super-polynomial-sized range

@ Chop a t-to-1 map from Z to Z°
@ e.g. with |Z|=2k, removing last bit gives a 2-to-1 mapping

@ Pri [Chop(h(x)) = w, Chop(h(y)) = Z]
= Prn [h(x) = wO or wl, h(y) = z0 or zl] = 4/1Z|2 = 1/|Z’|2

Today

@ Combinatorial hash functions, UOWHF and CRHF

@ (And weaker variants of CRHF: pre-image collision resistance
and second-pre-image collision resistance)

@ Collision-resistant combinatorial HF from 2-Universal Hash
Functions

@ Next:
@ UOWHF from 2-Universal HF and OWP (possible from OWF)
@ A candidate CRHF construction

@ Domain extension

