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One-time MAC 
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):


Key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

Negligible probability that Eve can produce a signature on m’≠m


A much more efficient solution, using 2-UHF (and still no 
computational assumptions):


Onetime-MACh(M) = h(M), where h←H, and H is a 2-UHF


Seeing hash of one input gives no information on hash of 
another value
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MAC 
With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)


CBC-MAC: Extends to any fixed length domain


Alternate approach (for fixed length domains):


MACK,h*(M) = PRFK(h(M)) where h←H, and H a 2-UHF

m1 m2 mt

FK FK FK

⊕ ⊕

T

...

h(M) not revealed



A proper MAC must work on inputs of variable length


Can make CBC-MAC work securely with variable input-length:

- Derive K as FK’(t), where t is the number of blocks

- Or, Use first block to specify number of blocks

- Or, output not the last tag T, but FK’(T), where K’ an independent key (EMAC)

- Or, XOR last message block with another key K’ (CMAC)


Idea: Leave variable input-lengths to the hash

But combinatorial hash functions worked with a fixed domain

Will use a cryptographic hash function


MAC*K,h(M) = MACK(h(M)) where h←H, and H a weak-CRHF


Weak-CRHFs can be based on OWF. Or, can be more 
efficiently constructed from fixed input-length MACs

MAC 
With Cryptographic Hash Functions

h(M) may be 
revealed 

but only oracle 
access to h



MAC 
With Cryptographic Hash Functions

MAC*K,h(M) = MACK(h(M)) where h←H, and H a weak-CRHF


Weak-CRHFs can be based on OWF. Or, can be more 
efficiently constructed from fixed input-length MACs.


Unlike the domain extension (to fixed length domain) using 2-UHF, 
or CBC-MAC, this doesn’t rely on pseudorandomness of MAC


Works with any one-block MAC (not just a PRF based MAC)


Could avoid “export restrictions” by not being a PRF


Candidate fixed input-length MACs: compression functions (with 
key as IV)


Recall: Compression functions used in Merkle-Damgård 
iterated hash functions



HMAC
HMAC: Hash-based MAC


Essentially built from a compression 
function f


If keys K1, K2 independent (called 
NMAC), then secure MAC if: f is 
a fixed input-length MAC & the 
Merkle-Damgård iterated-hash is a 
weak-CRHF


In HMAC (K1,K2) derived from (K’,K’’), 
in turn heuristically derived from a 
single key K. If f is a (weak kind of) 
PRF K1, K2 can be considered 
independent
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Hash Not a Random Oracle!
Hash functions are no substitute for RO, especially if built 
using iterated-hashing (even if the compression function was 
to be modeled as an RO)


If H is a Random Oracle, then just H(K||M) will be a MAC


But if H is a Merkle-Damgård iterated-hash function, then 
there is a simple length-extension attack for forgery


(That attack can be fixed by preventing extension: 
prefix-free encoding)


Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned 
out to be flawed too (even before breaking SHA1)



Digital Signatures



Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.  
Security: Same experiment as MAC’s, but adversary given VK

VK

Mi

si = 

SignSK(Mi)

(M,s)

VerVK(M,s)

Advantage = Pr[ VerVK(M,s)=1 and (M,s) ∉ {(Mi,si)} ]

SigSK VerVK

Weaker variant: Advantage = Pr[ VerVK(M,s)=1 and M ∉ {Mi} ]



Digital Signatures

Online verification of real life identity is difficult


But the verification key for a  
digital signature can serve as  
your digital identity


OK to own multiple digital  
identities


Compromised if you lose your 
signing key


Central to identity on the internet  
(with the help of certificate authorities), crypto currencies, etc.



Recall One-time MAC to sign a single n bit message


Shared secret key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n


Signature for m1...mn be (rimi)i=1..n
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One-time Digital Signatures

One-Time Digital Signature: Same signing key and 
signature, but VK= (f(ri0),f(ri1))i=1..n where f is a OWF


Verification applies f to signature elements and 
compares with VK


Security [Exercise]

f(r10) f(r20) f(r30)

f(r11) f(r21) f(r31)

Lamport’s 
One-Time 
Signature



Signatures from OWF
Lamport’s scheme based on OWF


One-time and has a fixed-length message


One-time, fixed-length message signatures         (Lamport)  
  Domain-Extension→ arbitrary length messages            (using UOWHF) 
  “Certificate Tree”→ many-time signatures                  (using PRF)


So, in principle, full-fledged digital signatures can be entirely 
based on OWF


Coming up:


Hash-and-Sign domain extension for signatures


Domain extension can be done using CRHF (more efficient) or 
UOWHF (more secure)


“Certificate tree”



Domain Extension of 
Signatures using Hash

Domain extension using a CRHF (not weak CRHF, unlike for MAC)


Sign*SK,h(M) = SignSK(h(M)) where h←H in both SK*,VK*


Security: Forgery gives either a hash collision or a forgery for 
the original (finite domain) signature

Formal reduction: Given adversary A for Sign*, define


Event1: A outputs (M,σ) s.t. h(M)=h(Mi), Mi≠M, where A had asked 
for signature on Mi.  
Event2: A’s forgery not on such an M.

Advantage ≤ Pr[Event1 or Event2] ≤ Pr[Event1] + Pr[Event2]

CRHF adversary: given h, sample (SK,VK), let VK*=(VK,h), and run 
A; answer signing queries of A using (SK,h). If A outputs (M,σ) s.t.  
∃i h(M)=h(Mi), Mi≠M, then output (M,Mi). Advantage = Pr[Event1]


Signature adversary: given VK, pick h, let VK*=(VK,h), and run A; 
answer signing queries of A using signature oracle. If A outputs 
forgery (M,σ), output (h(M),σ). Advantage = Pr[Event2]



Domain Extension of 
Signatures using Hash

Can use UOWHF, with fresh h every time (included in signature)


Sign*SK(M) = ( h,SignSK(h,h(M)) ) where h←H picked by signer


Security: To use a signature si in a forgery, need M such that  
hi(M)=hi(Mi). But hi is picked by signing algorithm after Mi is 
submitted.  Breaks UOWHF security by finding such a collision.


In reduction, UOWHF adversary guesses an i where collision 
occurs and sends h it received as hi (others picked unif’ly)

Event1,i : A outputs (M,(h,σ)) where (h,h(M)) = (hi,hi(Mi))


Event2 : A’s forgery s.t. (h,h(M)) ≠ (hi,hi(Mi)) for all i

Let q be an upper bound on number of queries by A

Advantage of A ≤ (  Pr[Event1,i]) + Pr[Event2]


UOWHF adversary has advantage = 1/q (  Pr[Event1,i])


Signature adversary has advantage = Pr[Event2]

∑
q
i=1

∑
q
i=1

q=1 suffices if 
Sign* is to be 
a one-time 

scheme



One-Time → Many-Times
Certificate chain: VK1 → (VK2, σ2) → … → (VKt, σt) → (m,σ) 
where σi is a signature on VKi that verifies w.r.t. VKi-1, and  
σ is a signature on m w.r.t. VKt


Suppose a “trustworthy” signer only signs the verification key of 
another “trustworthy” signer. Then, if VK1 is known to be issued by 
a trustworthy signer, and all links verified, then the message is 
signed by a trustworthy signer.


Certificate tree for one-time → many-times signatures


Idea: Each message is signed using a unique VK for that message

Verifier can’t hold all VKs: A binary tree of VKs, with each leaf 
designated for a message. Parent VK signs its pair of children 
VKs (one-time, fixed-length sign). Verifier remembers only root 
VK. Signer provides a certificate chain to the leaf VK used.

Signer can’t remember all SKs: Uses a PRF to define the tree 
(i.e., SK for each node), and remembers only the PRF seed



Signatures from OWF 
Summary

One-time, fixed-length message signatures         (Lamport)  
  Domain-Extension→ arbitrary length messages            (using UOWHF) 
  “Certificate Tree”→ many-time signatures                  (using PRF)


So, in principle, full-fledged digital signatures can be entirely 
based on OWF


Not very efficient: Say hashes are O(k) bits long. Then, a signature 
contains O(k) VKs of Lamport signature, each of which, to allow 
signing O(k) bit messages, is O(k2) bits long


Next time: More efficient schemes


