Hashes & MAC, Digital Signatures

Lecture 16
One-time MAC
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):
- Key: 2n random strings (each k-bit long) \((r^i_0, r^i_1)_{i=1..n}\)
- Signature for \(m_1...m_n\) be \((r^i_{mi})_{i=1..n}\)
- Negligible probability that Eve can produce a signature on \(m' \neq m\)

A much more efficient solution, using 2-UHF (and still no computational assumptions):
- Onetime-MAC\(_h\)(M) = h(M), where \(h \leftarrow \mathcal{H}\), and \(\mathcal{H}\) is a 2-UHF

Seeing hash of one input gives no information on hash of another value
Recall: PRF is a MAC (on one-block messages)

CBC-MAC: Extends to any fixed length domain

Alternate approach (for fixed length domains):

\[\text{MAC}_{K,h^*(M)} = \text{PRF}_K(h(M)) \] where \(h \leftarrow \mathcal{H} \), and \(\mathcal{H} \) a 2-UHF

\(h(M) \) not revealed
A proper MAC must work on inputs of variable length

Can make CBC-MAC work securely with variable input-length:
- Derive K as $F_K(t)$, where t is the number of blocks
- Or, Use first block to specify number of blocks
- Or, output not the last tag T, but $F_K(T)$, where K' an independent key (EMAC)
- Or, XOR last message block with another key K' (CMAC)

Idea: Leave variable input-lengths to the hash
- But combinatorial hash functions worked with a fixed domain
- Will use a cryptographic hash function

$$\text{MAC}^*_K, h(M) = \text{MAC}_K(h(M)) \text{ where } h \leftarrow \mathcal{H}, \text{ and } \mathcal{H} \text{ a weak-CRHF}$$

Weak-CRHF can be based on OWF. Or, can be more efficiently constructed from fixed input-length MACs
MAC

With Cryptographic Hash Functions

\[\text{MAC}^*_{K,h}(M) = \text{MAC}_K(h(M)) \] where \(h \leftarrow \mathcal{H} \), and \(\mathcal{H} \) a weak-CRHF

- Weak-CRHF s can be based on OWF. Or, can be more efficiently constructed from fixed input-length MACs.

Unlike the domain extension (to fixed length domain) using 2-UHF, or CBC-MAC, this doesn’t rely on pseudorandomness of MAC

- Works with any one-block MAC (not just a PRF based MAC)

- Could avoid “export restrictions” by not being a PRF

- Candidate fixed input-length MACs: compression functions (with key as IV)

- Recall: Compression functions used in Merkle-Damgård iterated hash functions
HMAC

HMAC: Hash-based MAC

Essentially built from a compression function f

If keys K_1, K_2 independent (called **NMAC**), then secure MAC if: f is a fixed input-length MAC & the Merkle-Damgård iterated-hash is a weak-CRHF

In HMAC (K_1,K_2) derived from (K',K''), in turn heuristically derived from a single key K. If f is a (weak kind of) PRF K_1, K_2 can be considered independent
Hash Not a Random Oracle!

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)

- If H is a Random Oracle, then just $H(K||M)$ will be a MAC

- But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery

 (That attack can be fixed by preventing extension: prefix-free encoding)

- Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned out to be flawed too (even before breaking SHA1)
Digital Signatures
Digital Signatures

Syntax: KeyGen, \(\text{Sign}_{SK} \) and \(\text{Verify}_{VK} \).

Security: Same experiment as MAC's, but adversary given VK

\[
\text{Advantage} = \Pr[\text{Ver}_{VK}(M, s) = 1 \text{ and } (M, s) \notin \{(M_i, s_i)\}]
\]

Weaker variant: \(
\text{Advantage} = \Pr[\text{Ver}_{VK}(M, s) = 1 \text{ and } M \notin \{M_i\}]
\)
Online verification of real life identity is difficult

But the verification key for a digital signature can serve as your digital identity

OK to own multiple digital identities

Compromised if you lose your signing key

Central to identity on the internet (with the help of certificate authorities), crypto currencies, etc.
One-time Digital Signatures

- Recall One-time MAC to sign a single n bit message
 - **Shared secret key:** $2n$ random strings (each k-bit long) $(r_{i0}, r_{i1})_{i=1..n}$
 - **Signature for** $m_1...m_n$ be $(r_{imi})_{i=1..n}$
 - **One-Time Digital Signature:** Same signing key and signature, but $VK = (f(r_{i0}), f(r_{i1}))_{i=1..n}$ where f is a OWF
 - Verification applies f to signature elements and compares with VK

<table>
<thead>
<tr>
<th>$f(r_{i0})$</th>
<th>$f(r_{i1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(r_{i2})$</td>
<td>$f(r_{i3})$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r_{i0}</th>
<th>r_{i2}</th>
<th>r_{i3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{i1}</td>
<td>r_{i2}</td>
<td>r_{i3}</td>
</tr>
</tbody>
</table>

- Security [Exercise]
Signatures from OWF

- Lamport’s scheme based on OWF
 - One-time and has a fixed-length message

- One-time, fixed-length message signatures (Lamport)
 - Domain-Extension → arbitrary length messages (using UOWHF)
 - "Certificate Tree" → many-time signatures (using PRF)

- So, in principle, full-fledged digital signatures can be entirely based on OWF

- Coming up:
 - **Hash-and-Sign** domain extension for signatures
 - Domain extension can be done using CRHF (more efficient) or UOWHF (more secure)
 - "Certificate tree"
Domain Extension of Signatures using Hash

- Domain extension using a **CRHF** (not weak CRHF, unlike for MAC)
 \[
 \text{Sign}^*_\text{SK},h(M) = \text{Sign}_\text{SK}(h(M)) \text{ where } h \leftarrow \mathcal{H} \text{ in both } \text{SK}^*, \text{VK}^*
 \]

- Security: Forgery gives either a hash collision or a forgery for the original (finite domain) signature

Formal reduction: Given adversary A for Sign*, define
- Event$_1$: A outputs \((M, \sigma)\) s.t. \(h(M)=h(M_i), M_i \neq M\), where A had asked for signature on \(M_i\).
- Event$_2$: A's forgery not on such an \(M\).

Advantage \(\leq \Pr[\text{Event}_1 \text{ or Event}_2] \leq \Pr[\text{Event}_1] + \Pr[\text{Event}_2]\)

CRHF adversary: given \(h\), sample \((\text{SK}, \text{VK})\), let \(\text{VK}^*=(\text{VK}, h)\), and run A; answer signing queries of A using \((\text{SK}, h)\). If A outputs \((M, \sigma)\) s.t. \(\exists i \ h(M)=h(M_i), M_i \neq M\), then output \((M, M_i)\). Advantage = \(\Pr[\text{Event}_1]\)

Signature adversary: given \(\text{VK}\), pick \(h\), let \(\text{VK}^*=(\text{VK}, h)\), and run A; answer signing queries of A using signature oracle. If A outputs forgery \((M, \sigma)\), output \((h(M), \sigma)\). Advantage = \(\Pr[\text{Event}_2]\)
Domain Extension of Signatures using Hash

- Can use UOWHF, with fresh h every time (included in signature)
- $\text{Sign}_{sk}^*(M) = (h, \text{Sign}_{sk}(h, h(M)))$ where $h \leftarrow \$ \text{picked by signer}$
- Security: To use a signature s_i in a forgery, need M such that $h_i(M) = h_i(M_i)$. But h_i is picked by signing algorithm after M_i is submitted. Breaks UOWHF security by finding such a collision.
- In reduction, UOWHF adversary guesses an i where collision occurs and sends h it received as h_i (others picked uniformly)

Event$_{1,i}$: A outputs $(M, (h, \sigma))$ where $(h, h(M)) = (h_i, h_i(M_i))$
Event$_{2}$: A's forgery s.t. $(h, h(M)) \neq (h_i, h_i(M_i))$ for all i
Let q be an upper bound on number of queries by A

Advantage of $A \leq (\sum_{i=1}^{q} \text{Pr}[\text{Event}_{1,i}]) + \text{Pr}[\text{Event}_{2}]$
UOWHF adversary has advantage $= 1/q \left(\sum_{i=1}^{q} \text{Pr}[\text{Event}_{1,i}]\right)$
Signature adversary has advantage $= \text{Pr}[\text{Event}_{2}]$

$q=1$ suffices if Sign* is to be a one-time scheme
One-Time \rightarrow Many-Times

Certificate chain: $VK_1 \rightarrow (VK_2, \sigma_2) \rightarrow \ldots \rightarrow (VK_t, \sigma_t) \rightarrow (m, \sigma)$

where σ_i is a signature on VK_i that verifies w.r.t. VK_{i-1}, and σ is a signature on m w.r.t. VK_t.

Suppose a “trustworthy” signer only signs the verification key of another “trustworthy” signer. Then, if VK_1 is known to be issued by a trustworthy signer, and all links verified, then the message is signed by a trustworthy signer.

Certificate tree for one-time \rightarrow many-times signatures

Idea: Each message is signed using a unique VK for that message.

Verifier can’t hold all VKs: A binary tree of VKs, with each leaf designated for a message. Parent VK signs its pair of children VKs (one-time, fixed-length sign). Verifier remembers only root VK. Signer provides a certificate chain to the leaf VK used.

Signer can’t remember all SKs: Uses a PRF to define the tree (i.e., SK for each node), and remembers only the PRF seed.
Signatures from OWF

Summary

- One-time, fixed-length message signatures (Lamport)
 - Domain-Extension \(\rightarrow\) arbitrary length messages (using UOWHF)
 - “Certificate Tree” \(\rightarrow\) many-time signatures (using PRF)

- So, in principle, full-fledged digital signatures can be entirely based on OWF

- Not very efficient: Say hashes are \(O(k)\) bits long. Then, a signature contains \(O(k)\) VKs of Lamport signature, each of which, to allow signing \(O(k)\) bit messages, is \(O(k^2)\) bits long

- Next time: More efficient schemes