
Hashes & MAC,

Digital Signatures

Lecture 16

One-time MAC
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

Key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

Negligible probability that Eve can produce a signature on m’≠m

A much more efficient solution, using 2-UHF (and still no
computational assumptions):

Onetime-MACh(M) = h(M), where h←H, and H is a 2-UHF

Seeing hash of one input gives no information on hash of
another value

r10 r20 r30

r11 r21 r31

RE
CA

LL

MAC
With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)

CBC-MAC: Extends to any fixed length domain

Alternate approach (for fixed length domains):

MACK,h*(M) = PRFK(h(M)) where h←H, and H a 2-UHF

m1 m2 mt

FK FK FK

⊕ ⊕

T

...

h(M) not revealed

A proper MAC must work on inputs of variable length

Can make CBC-MAC work securely with variable input-length:

- Derive K as FK’(t), where t is the number of blocks

- Or, Use first block to specify number of blocks

- Or, output not the last tag T, but FK’(T), where K’ an independent key (EMAC)

- Or, XOR last message block with another key K’ (CMAC)

Idea: Leave variable input-lengths to the hash

But combinatorial hash functions worked with a fixed domain

Will use a cryptographic hash function

MAC*K,h(M) = MACK(h(M)) where h←H, and H a weak-CRHF

Weak-CRHFs can be based on OWF. Or, can be more
efficiently constructed from fixed input-length MACs

MAC
With Cryptographic Hash Functions

h(M) may be
revealed

but only oracle
access to h

MAC
With Cryptographic Hash Functions

MAC*K,h(M) = MACK(h(M)) where h←H, and H a weak-CRHF

Weak-CRHFs can be based on OWF. Or, can be more
efficiently constructed from fixed input-length MACs.

Unlike the domain extension (to fixed length domain) using 2-UHF,
or CBC-MAC, this doesn’t rely on pseudorandomness of MAC

Works with any one-block MAC (not just a PRF based MAC)

Could avoid “export restrictions” by not being a PRF

Candidate fixed input-length MACs: compression functions (with
key as IV)

Recall: Compression functions used in Merkle-Damgård
iterated hash functions

HMAC
HMAC: Hash-based MAC

Essentially built from a compression
function f

If keys K1, K2 independent (called
NMAC), then secure MAC if: f is
a fixed input-length MAC & the
Merkle-Damgård iterated-hash is a
weak-CRHF

In HMAC (K1,K2) derived from (K’,K’’),
in turn heuristically derived from a
single key K. If f is a (weak kind of)
PRF K1, K2 can be considered
independent

K’’

f

IV

T

M

K’

f

IV

m1 mt

...f f f

|m|

f

K2

K1

Hash Not a Random Oracle!
Hash functions are no substitute for RO, especially if built
using iterated-hashing (even if the compression function was
to be modeled as an RO)

If H is a Random Oracle, then just H(K||M) will be a MAC

But if H is a Merkle-Damgård iterated-hash function, then
there is a simple length-extension attack for forgery

(That attack can be fixed by preventing extension:
prefix-free encoding)

Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned
out to be flawed too (even before breaking SHA1)

Digital Signatures

Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.
Security: Same experiment as MAC’s, but adversary given VK

VK

Mi

si =

SignSK(Mi)

(M,s)

VerVK(M,s)

Advantage = Pr[VerVK(M,s)=1 and (M,s) ∉ {(Mi,si)}]

SigSK VerVK

Weaker variant: Advantage = Pr[VerVK(M,s)=1 and M ∉ {Mi}]

Digital Signatures

Online verification of real life identity is difficult

But the verification key for a
digital signature can serve as
your digital identity

OK to own multiple digital
identities

Compromised if you lose your
signing key

Central to identity on the internet
(with the help of certificate authorities), crypto currencies, etc.

Recall One-time MAC to sign a single n bit message

Shared secret key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

r10 r20 r30

r11 r21 r31

One-time Digital Signatures

One-Time Digital Signature: Same signing key and
signature, but VK= (f(ri0),f(ri1))i=1..n where f is a OWF

Verification applies f to signature elements and
compares with VK

Security [Exercise]

f(r10) f(r20) f(r30)

f(r11) f(r21) f(r31)

Lamport’s
One-Time
Signature

Signatures from OWF
Lamport’s scheme based on OWF

One-time and has a fixed-length message

One-time, fixed-length message signatures (Lamport)
 Domain-Extension→ arbitrary length messages (using UOWHF)
 “Certificate Tree”→ many-time signatures (using PRF)

So, in principle, full-fledged digital signatures can be entirely
based on OWF

Coming up:

Hash-and-Sign domain extension for signatures

Domain extension can be done using CRHF (more efficient) or
UOWHF (more secure)

“Certificate tree”

Domain Extension of
Signatures using Hash

Domain extension using a CRHF (not weak CRHF, unlike for MAC)

Sign*SK,h(M) = SignSK(h(M)) where h←H in both SK*,VK*

Security: Forgery gives either a hash collision or a forgery for
the original (finite domain) signature

Formal reduction: Given adversary A for Sign*, define

Event1: A outputs (M,σ) s.t. h(M)=h(Mi), Mi≠M, where A had asked
for signature on Mi.
Event2: A’s forgery not on such an M.

Advantage ≤ Pr[Event1 or Event2] ≤ Pr[Event1] + Pr[Event2]

CRHF adversary: given h, sample (SK,VK), let VK*=(VK,h), and run
A; answer signing queries of A using (SK,h). If A outputs (M,σ) s.t.
∃i h(M)=h(Mi), Mi≠M, then output (M,Mi). Advantage = Pr[Event1]

Signature adversary: given VK, pick h, let VK*=(VK,h), and run A;
answer signing queries of A using signature oracle. If A outputs
forgery (M,σ), output (h(M),σ). Advantage = Pr[Event2]

Domain Extension of
Signatures using Hash

Can use UOWHF, with fresh h every time (included in signature)

Sign*SK(M) = (h,SignSK(h,h(M))) where h←H picked by signer

Security: To use a signature si in a forgery, need M such that
hi(M)=hi(Mi). But hi is picked by signing algorithm after Mi is
submitted. Breaks UOWHF security by finding such a collision.

In reduction, UOWHF adversary guesses an i where collision
occurs and sends h it received as hi (others picked unif’ly)

Event1,i : A outputs (M,(h,σ)) where (h,h(M)) = (hi,hi(Mi))

Event2 : A’s forgery s.t. (h,h(M)) ≠ (hi,hi(Mi)) for all i

Let q be an upper bound on number of queries by A

Advantage of A ≤ (Pr[Event1,i]) + Pr[Event2]

UOWHF adversary has advantage = 1/q (Pr[Event1,i])

Signature adversary has advantage = Pr[Event2]

∑
q
i=1

∑
q
i=1

q=1 suffices if
Sign* is to be
a one-time

scheme

One-Time → Many-Times
Certificate chain: VK1 → (VK2, σ2) → … → (VKt, σt) → (m,σ)
where σi is a signature on VKi that verifies w.r.t. VKi-1, and
σ is a signature on m w.r.t. VKt

Suppose a “trustworthy” signer only signs the verification key of
another “trustworthy” signer. Then, if VK1 is known to be issued by
a trustworthy signer, and all links verified, then the message is
signed by a trustworthy signer.

Certificate tree for one-time → many-times signatures

Idea: Each message is signed using a unique VK for that message

Verifier can’t hold all VKs: A binary tree of VKs, with each leaf
designated for a message. Parent VK signs its pair of children
VKs (one-time, fixed-length sign). Verifier remembers only root
VK. Signer provides a certificate chain to the leaf VK used.

Signer can’t remember all SKs: Uses a PRF to define the tree
(i.e., SK for each node), and remembers only the PRF seed

Signatures from OWF
Summary

One-time, fixed-length message signatures (Lamport)
 Domain-Extension→ arbitrary length messages (using UOWHF)
 “Certificate Tree”→ many-time signatures (using PRF)

So, in principle, full-fledged digital signatures can be entirely
based on OWF

Not very efficient: Say hashes are O(k) bits long. Then, a signature
contains O(k) VKs of Lamport signature, each of which, to allow
signing O(k) bit messages, is O(k2) bits long

Next time: More efficient schemes

