Hashes & MAC,
Digital Signatures

Lecture 16

One-time MAC

With 2-Universal Hash Functions

@Trivial (very inefficient) solution (fo sign a single n bit message):

® Key: 2n random strings (each k-bit long) (rio,ri1)i1.n
@ Signature for m;..mn be (rimi)ii.n

T‘lo

r‘zo

r‘3o

I"11

l"21

r31

@ Negligible probability that Eve can produce a signature on m’#m

@ A much more efficient solution, using 2-UHF (and still no

computational assumptions):

@ Onetime-MACL(M) = h(M), where h<#, and & is a 2-UHF

@ Seeing hash of one input gives no information on hash of

another value

MAC

With Combinatorial Hash Functions and PRF

@ Recall: PRF is a MAC (on one-block messages) mll mgé m%
bde
|

® CBC-MAC: Extends fo any fixed length domain

F Fe| o
a1l B " (e

@ Alternate approach (for fixed length domains):

@ MACkr*(M) = PRFk(h(M)) where h<#, and & a 2-UHF

[h(M) not revealed}

MAC

With Cryptographic Hash Functions

@ A proper MAC must work on inputs of variable length

@ Can make CBC-MAC work securely with variable input-length:

- Derive K as Fx(t), where t is the number of blocks

- Or, Use first block fo specify number of blocks

_ Or, output not the last tag T, but Fx(T), where K’ an independent key (EMAC)
_ Or, XOR last message block with another key K’ (CMAC)

@ Idea: Leave variable input-lengths to the hash
@ But combinatorial hash functions worked with a fixed domain
@ Will use a cryptographic hash function

@ MAC*h(M) = MACk(h(M)) where h<—#, and & a weak-CRHF

. 2
h(M) may be
® Weak-CRHFs can be based on OWF. Or, can be more e led

efficiently constructed from fixed input-length MACs but only oracle

access to h
e 10

MAC

With Cryptographic Hash Functions

& MAC*n(M) = MACk(h(M)) where h<—#, and & a weak-CRHF

® Weak-CRHFs can be based on OWF. Or, can be more
efficiently constructed from fixed input-length MACs.

@ Unlike the domain extension (fo fixed length domain) using 2-UHF,
or CBC-MAC, this doesnt rely on pseudorandomness of MAC
@ Works with any one-block MAC (not just a PRF based MAC)
@ Could avoid “export restrictions” by not being a PRF

@ Candidate fixed input-length MACs: compression functions (with
key as IV)

@ Recall: Compression functions used in Merkle-Damgard
iterated hash functions

HMAC

@ HMAC: Hash-based MAC K"

@ Essentially built from a compression

function f Iv_l
@ If keys K;, Kz independent (called
NMAC), then secure MAC if: fis

a fixed input-length MAC & the
Merkle-Damgard iterated-hash is a
weak-CRHF

@ In HMAC (K K>) derived from (K',K"),
in furn heuristically derived from a
single key K. If f is a (weak kind of)
PRF K;, K2 can be considered
independent

v - | | W
(IV K’I Kzlv h
v

Hash Not a Random Oracle!

@ Hash functions are no substitute for RO, especially if built
using iterated-hashing (even if the compression function was
to be modeled as an RO)

@ If H is a Random Oracle, then just H(K|IM) will be a MAC

@ But if H is a Merkle-Damgard iterated-hash function, then
there is a simple length-extension attack for forgery

@ (That attack can be fixed by preventing extension:
prefix-free encoding)

@ Other suggestions like SHAL(MIIK), SHAL(K|IMIIK) all turned
out to be flawed too (even before breaking SHA1)

Digital Signatures

@ Syntax: KeyGen, Signsk and Verifyyk.
Security: Same experiment as MACS, but adversary given VK

lVerVK(M,s)

Advantage = Pr[Verw(M,s)=1 and (M,s) ¢ {(M;si)}]
Weaker variant: Advantage = Pr[Veryk(M,s)=1 and M ¢ {M;}]

Digital Signatures

@ Online verification of real life identity is difficult

@ But the verification key for a
digital signature can serve as
your digital identity

@ OK fo own multiple digital
idenftities

@ Compromised if you lose your
signing key

"On the Internet, nobaody knows you're a dog.”

@ Central to identity on the internet
(with the help of certificate authorities), crypto currencies, etc.

One-time Digital Signatures

@ Recall One-time MAC to sign a single n bit message

Lamports
One-Time
Signature

@ Shared secret key: 2n random strings (each k-bit long) (ri,rit)izi.

@ Signature for mj..m, be (rimi)i-1.n

@ One-Time Digital Signature: Same signing key and
signature, but VK= (f(rio),f(ri1))ici.n where f is a OWF

@ Verification applies f to signature elements and
compares with VK

@ Security [Exercise]

f(rlo)

f(r2o)

f(r3o)

f(rl)

f(ra)

f(r3)

l"lo

I"Zo

I"3o

rh

I"21

r3

Signatures from OWF

@ Lamports scheme based on OWF

@ One-time and has a fixed-length message

® One-time, fixed-length message signatures (Lamport)
Domain-Extension . grbitrary length messages (using UOWHF)
Certificate Tree” . many-time signatures (using PRF)

@ So, in principle, full-fledged digital signatures can be entirely
based on OWF

@ Coming up:
® Hash-and-Sign domain extension for signatures

@ Domain extension can be done using CRHF (more efficient) or
UOWHF (more secure)

® "Certificate tree”

Domain Extension of
Signatures using Hash

@ Domain extension using a CRHF (not weak CRHF, unlike for MAC)
@ Sign*skn(M) = Signsk(h(M)) where h<# in both SK*VK*

@ Security: Forgery gives either a hash collision or a forgery for
the original (finite domain) signature

@ Formal reduction: Given adversary A for Sign*, define

@ Event;: A outputs (M,0) s.t. h(M)=h(M;), Mi#M, where A had asked
for signature on M..

Eventa: As forgery not on such an M.

@ Advantage < Pr[Event; or Event;] < Pr[Eventi] + Pr[Event;]

@ CRHF adversary: given h, sample (SK,VK), let VK*=(VK,h), and run
A; answer signing queries of A using (SK,h). If A outputs (M,0) s.t.
3i h(M)=h(M;), Mi#M, then output (M,M)). Advantage = Pr[Event]

@ Signature adversary: given VK, pick h, let VK*=(VK,h), and run A;
answer signing queries of A using signature oracle. If A outputs
forgery (M,s), output (h(M),s). Advantage = Pr[Event;]

Domain Extension of
Signatures using Hash

@ Can use UOWHF, with fresh h every time (included in signature)
@ Sign*sk(M) = (h,Signsk(h,h(M))) where h<—# picked by signer
@ Security: To use a signature s; in a forgery, need M such that
hi(M)=hi(M;). But h; is picked by signing algorithm after M; is
submitted. Breaks UOWHF security by finding such a collision.

@ In reduction, UOWHF adversary guesses an i where collision
occurs and sends h it received as hi (others picked unif’ly)

Eventyi : A outputs (M,(h,0)) where (h,h(M)) = (hi,hi(M}))

Event, : As forgery s.t. (h,h(M)) # (hi,hi(M)) for all i | 9=L suffices if

Sign* is to b
Let q be an upper bound on number of queries by A < frcl;ne's-’ri?nee

Advantage of A < (Ziqzl Pr[Event;;]) + Pr[Event;] scheme

UOWHF adversary has advantage = 1/q (X}, Pr[Event,;])
Signature adversary has advantage = Pr[Event;]

@ © © O @ O

One-Time — Many-Times

Certificate chain: VK; — (VK2 02) — ... — (VK4, ot) — (m,o0)

where gj is a signature on VK; that verifies w.r.t. VK., and

o is a signature on m w.r.t. VK

@ Suppose a “trustworthy” signer only signs the verification key of
another “trustworthy” signer. Then, if VK, is known to be issued by

a trustworthy signer, and all links verified, then the message is
signed by a trustworthy signer.

Certificate free for one-time — many-times signatures
@ Idea: Each message is signed using a unique VK for that message

@ Verifier cant hold all VKs: A binary tree of VKs, with each leaf
designated for a message. Parent VK signs its pair of children
VKs (one-time, fixed-length sign). Verifier remembers only root
VK. Signer provides a certificate chain to the leaf VK used.

@ Signer cant remember all SKs: Uses a PRF to define the tree
(i.e., SK for each node), and remembers only the PRF seed

Signatures from OWF

Summary
® One-time, fixed-length message signatures (Lamport)
Domain-Extension . grbitrary length messages (using UOWHF)
“Certificate Tree” . many-time signatures (using PRF)

@ So, in principle, full-fledged digital signatures can be entirely
based on OWF

@ Not very efficient: Say hashes are O(k) bits long. Then, a signature
contains O(k) VKs of Lamport signature, each of which, to allow
signing O(k) bit messages, is O(k2) bits long

® Next time: More efficient schemes

