
Digital Signatures (ctd.)
Lecture 17

Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.
Security: Same experiment as MAC’s, but adversary given VK

VK

Mi

si =

SignSK(Mi)

(M,s)

VerVK(M,s)

Advantage = Pr[VerVK(M,s)=1 and (M,s) ∉ {(Mi,si)}]

SigSK VerVK

Weaker variant: Advantage = Pr[VerVK(M,s)=1 and M ∉ {Mi}]

RE
CA

LL

Signatures from OWF
Summary

One-time, fixed-length message signatures (Lamport)
 Domain-Extension→ arbitrary length messages (using UOWHF)
 “Certificate Tree”→ many-time signatures (using PRF)

So, in principle, full-fledged digital signatures can be entirely
based on OWF

Not very efficient: Say hashes are O(k) bits long. Then, a signature
contains O(k) VKs of Lamport signature, each of which, to allow
signing O(k) bit messages, is O(k2) bits long

Today: More efficient schemes

RE
CA

LL

Hash and Invert

Diffie-Hellman suggestion (heuristic): Sign(M) = f-1(M) where
(SK,VK) = (f-1,f), a Trapdoor OWP pair. Verify(M,σ) = 1 iff f(σ)=M.

Attack: pick σ, let M=f(σ) (Existential forgery)

Fix, using a “hash”: Sign(M) = f-1(Hash(M))

Secure in the random oracle model

Hash can handle variable length inputs

RSA-PSS in RSA Standard PKCS#1 is based on this

Proving Security in the
RO Model

To prove: If Trapdoor OWP secure, then Sign(M) = f-1(Hash(M)) is a
secure digital signature, when Hash is modelled as a random oracle

Hope: Since adversary can’t invert Hash, needs to compute f-1

Problem: Signing oracle gives adversary access to the f-1 oracle.
But then, trapdoor OWP gives no guarantees!

But adversary only sees (x,f-1(x)) where x = Hash(M) is random.
This can be arranged by picking f-1(x) first and fixing Hash(M)
afterwards!

Modeling as an RO: RO randomly initialized to a random function H
from {0,1}* to {0,1}k

Signer and verifier (and forger) get oracle access to H(.)

All probabilities also over the initialization of the RO

Proving Security in ROM
Reduction: If A forges signature (where Sign(M) = f-1(H(M)) with
(f,f-1) from Trapdoor OWP and H an RO), then A* that can break
Trapdoor OWP (i.e., given just f, and a random challenge z, can
find f-1(z) w.n.n.p). A*(f,z) runs A internally.

A expects f, access to the RO and a signing oracle f-1(Hash(.))
and outputs (M,σ) as forgery

A* can implement RO: a random
response to each new query!

A* gets f, but doesn’t have f-1 to sign

But x = H(M) is a random value that
A* can pick!

A* picks H(M) as x=f(y) for random y;
then Sign(M) = f-1(x) = y

(f,z)

A

Mi

f-1(H(Mi)) (M,σ)

Sig Mj H(Mj)

H

Proving Security in ROM
A* s.t. if A forges signature, then A* can break Trapdoor OWP

A* implements H and Sign: For each new M queried to H
(including by Sign), A* sets H(M)=f(y) for random y; Sign(M) = y

But A* should force A to invert z

For a random (new) query M (say tth) A* sets H(M)=z

Here queries include the “last
query” to H, i.e., the one for
verifying the forgery (which
may or may not be a new query)

Given a bound q on the number of
queries that A makes to Sign/H, with
probability 1/q, A* would have set
H(M)=z, where M is the message in the
forgery

In that case forgery ⇒ σ = f-1(z) A

Mi

f-1(H(Mi)) (M,σ)

Sig

(f,z)

Mj H(Mj)

H

σ

Schnorr Signature
Public parameters: (G,g) where G is a prime-order group and g a
generator, for which DLA holds, and a random oracle H

Or (G,g) can be picked as part of key generation

Signing Key: y ∈ Zq where G is of order q. Verification Key: Y = gy

Signy(M) = (x,s) where x = H(M||gr) and s = r-xy, for a random r

VerifyY(M,(x,s)): Compute R = gs⋅Yx and check x = H(M||R)

Secure in the Random Oracle Model under the Discrete Log
Assumption for a group

Alternately, under a heuristic model for the group (called the
Generic Group Model), but under standard-model assumptions
on the hash function

Cramer-Shoup Signature
Based on “Strong RSA assumption.” Here, a variant by Damgård-
Koprowski based on “Strong Root Assumption.”

For all PPT adversaries A, following probability is negligible:

Root Assumption: PrG,X,e[A(e,X) = T, Te = X] (G,X,e) appropriately distributed

Strong Root Assumption: PrG,X[A(X) = (X,e), e>1, Te = X]

Important that the order of G is unpredictable

In fact, |G| yields d = 1/e mod |G| s.t. with T=Xd, we have Te = X.
Will use large prime e, to guarantee gcd(e,|G|) = 1.

KeyGen: VK = (H,G,g,X,e) and SK = (VK,|G|) where H ← CRHF,
(G,|G|) ← GroupGen, g ← G, X = gx, e prime.
Sign: (R,s,T) s.t. R←G, s≠e large random prime, Z = Rsg-H(message), and
T = (XgH(Z))1/e (where 1/e mod |G| is computed using |G|)
Verify: Compute Z = Rs/gH(message). Check s≠e large, T = (XgH(Z))1/e

Summary
Digital signatures can be based on OWF + UWOHF + PRF

In turn based on OWF (or more efficiently on OWP)

More efficiently, can be based on number-theoretic/algebraic
assumptions (e.g., Cramer-Shoup signatures based on Strong RSA
and CRHF)

In practice, based on number-theoretic/algebraic assumptions in
the random oracle model

RSA-PSS, of the form f-1(Hash(M)), where f a Trapdoor OWP

DSA and variants, based on Schnorr signature

In PKE, KeyGen produces a random (PK,SK) pair

Can I have a “fancy public-key” (e.g., my name)?

No! Not secure if one can pick any PK and find an SK for it!

But suppose a trusted authority for key generation

Identity-Based Encryption: a key-server (with a master
secret-key) that can generate a valid (PK,SK) pair for any PK

Encryption will use the master public-key, and the
receiver’s “identity” (i.e., fancy public-key)

In PKE, sender has to retrieve PK for every party it
wants to talk to (from a trusted public directory)

In IBE, receiver has to obtain its SK from the authority

VK as ID: An Example

Identity-Based Encryption

Security requirement for IBE (will skip formal statement):

Environment/adversary decides the ID of the honest parties

Adversary can adaptively request SK for any number of IDs
(which are not used for honest parties)

“CPA security” for encryption with the ID of honest parties

IBE (only CPA-secure) can easily give CCA-secure PKE!

Idea: Can’t malleate an IBE ciphertext to change ID

PKEncMPK(m) = (id, C=IBEncMPK(id; m), signid(C))

Security: can’t create a different encryption
with same id (signature’s security); can’t
malleate using a different id (IBE’s security)

Digital Signature with
its public-key used as

the ID in IBE

VK as ID: An Example

Identity-Based Encryption

