Digital Signatures (ctd.)

Lecture 17

y Digital Signatures

@ Syntax: KeyGen, Signsk and Verifyyk.
Security: Same experiment as MACS, but adversary given VK

lVerVK(M,s)

Advantage = Pr[Verw(M,s)=1 and (M,s) ¢ {(Mis)}]
Weaker variant: Advantage = Pr[Veryk(M,s)=1 and M ¢ {M;}]

y Signatures from OWF
Summary

® One-time, fixed-length message signatures (Lamport)
Domain-Extension . grbitrary length messages (using UOWHF)
“Certificate Tree” . many-time signatures (using PRF)

@ So, in principle, full-fledged digital signatures can be entirely
based on OWF

@ Not very efficient: Say hashes are O(k) bits long. Then, a signature
contains O(k) VKs of Lamport signature, each of which, to allow
signing O(k) bit messages, is O(k2) bits long

@ Today: More efficient schemes

Hash and Invert

@ Diffie-Hellman suggestion (heuristic): Sign(M) = f-1(M) where
(SK,VK) = (f-1,f), a Trapdoor OWP pair. Verify(M,c) = 1 iff f(c)=M.

@ Attack: pick o, let M=f(c) (Existential forgery)
@ Fix, using a “hash”: Sign(M) = f-1(Hash(M))

@ Secure in the random oracle model
@ Hash can handle variable length inputs

@ RSA-PSS in RSA Standard PKCS#1 is based on this

Proving Security in the
RO Model

@ To prove: If Trapdoor OWP secure, then Sign(M) = f-i(Hash(M)) is a
secure digital signature, when Hash is modelled as a random oracle

@ Hope: Since adversary cant invert Hash, needs to compute f-!

@ Problem: Signing oracle gives adversary access to the f-! oracle.
But then, trapdoor OWP gives no guarantees!

@ But adversary only sees (x,f-!(x)) where x = Hash(M) is random.
This can be arranged by picking f-{(x) first and fixing Hash(M)
afterwards!

@ Modeling as an RO: RO randomly initialized to a random function H
from {0,1}* to {0,1}k

@ Signer and verifier (and forger) get oracle access to H(.)

@ All probabilities also over the initialization of the RO

Proving Security in ROM

@ Reduction: If A forges signature (where Sign(M) = f-i(H(M)) with
(f,f-1) from Trapdoor OWP and H an RO), then A* that can break
Trapdoor OWRP (i.e., given just f, and a random challenge z, can
find f-1(z) w.n.n.p). A*(f,z) runs A internally.

@ A expects f, access to the RO and a signing oracle f-}(Hash(.))
and outputs (M,s) as forgery

@ A* can implement RO: a random
response to each new query! e

@ A° gets f, but doesnt have f-! to sign

@ But x = H(M) is a random value that
A can pick!

@ A* picks H(M) as x=f(y) for random v;
then Sign(M) = fi(x) = v

Proving Security in ROM

@ A" s.t. if A forges signature, then A can break Trapdoor OWP
@ A" implements H and Sign: For each new M queried to H
(including by Sign), A sets H(M)=f(y) for random y; Sign(M) =y
@ But A* should force A to invert z
@ For a random (new) query M (say tth) A* sets H(M)=z

@ Here queries include the “last
query” to H, i.e., the one for f
verifying the forgery (which
may or may not be a new query)

.
o
.
.
.

.
"“
.
““““

@ Given a bound q on the number of
queries that A makes to Sign/H, with
probability 1/q, A“ would have set
H(M)=z, where M is the message in the
forgery

@ In that case forgery = o = f-i(z)

d

d

d

Schnorr Signature

Public parameters: (G,g) where G is a prime-order group and g a
generator, for which DLA holds, and a random oracle H

@ Or (G,g) can be picked as part of key generation

Signing Key: y € Zq where G is of order q. Verification Key: Y = g¥
Signy(M) = (x,s) where x = H(Mllgr) and s = r-xy, for a random r
Verifyy(M,(x,s)): Compute R = gs-Y* and check x = H(MIIR)

Secure in the Random Oracle Model under the Discrete Log
Assumption for a group

@ Alternately, under a heuristic model for the group (called the
Generic Group Model), but under standard-model assumptions
on the hash function

Cramer-Shoup Signature

@ Based on "Strong RSA assumption.” Here, a variant by Damgard-
Koprowski based on “"Strong Root Assumption.”

@ For all PPT adversaries A, following probability is negligible:
@ Root Assumption: Prex.c[A(e,X) =T, Te = X] (6x.e) appropriately distributed
@ Strong Root Assumption: Prex[A(X) = (X,e), e>], Te = X]

@ Important that the order of G is unpredictable

@ In fact, |G| yields d = 1/e mod |G| s.t. with T=Xd, we have Te = X.
Will use large prime e, to guarantee gcd(e,|Gl) = 1.
@ KeyGen: VK = (H,G,g,X,e) and SK = (VK,|IG|) where H < CRHF,
(G,IGl) < GroupGen, g < G, X = g%, e prime.
Sign: (R,s,T) s.t. R<—G, s#e large random prime, Z = Rsg-H(message), and
T = (XgH@)i/e (where 1/e mod |G| is computed using |G[)
Verify: Compute Z = Rs/gH(message). Check s#e large, T = (XgH(@)i/e

Summary

@ Digital signatures can be based on OWF + UWOHF + PRF
@ In turn based on OWF (or more efficiently on OWP)

@ More efficiently, can be based on number-theoretic/algebraic

assumptions (e.g., Cramer-Shoup signatures based on Strong RSA
and CRHF)

@ In practice, based on number-theoretic/algebraic assumptions in
the random oracle model

@ RSA-PSS, of the form f-i(Hash(M)), where f a Trapdoor OWP

@ DSA and variants, based on Schnorr signature

VK as ID: An Example
Identity-Based Encryption

@ In PKE, KeyGen produces a random (PK,SK) pair
@ Can I have a “fancy public-key” (e.g., my name)?

@ No! Not secure if one can pick any PK and find an SK for it!
@ But suppose a trusted authority for key generation

@ Identity-Based Encryption: a key-server (with a master
secret-key) that can generate a valid (PK,SK) pair for any PK

@ Encryption will use the master public-key, and the
receivers "identity” (i.e., fancy public-key)

@ In PKE, sender has fo retfrieve PK for every party it
wants to talk to (from a trusted public directory)

@ In IBE, receiver has to obtain its SK from the authority

VK as ID: An Example
Identity-Based Encryption

@ Security requirement for IBE (will skip formal statement):
@ Environment/adversary decides the ID of the honest parties

@ Adversary can adaptively request SK for any number of IDs
(which are not used for honest parties)

@ "CPA security” for encryption with the ID of honest parties
@ IBE (only CPA-secure) can easily give CCA-secure PKE!
@ Idea: Cant malleate an IBE ciphertext to change ID

® PKEncmek(m) = (id, C=IBEncmex(id; m), signia(C))

~

@ Security: cant create a different encryption | pigital Signature with
with same id (signatures security); cant its p::licl-;gy t;;:d as
malleate using a different id (IBES security) ek

