Digital Signatures (ctd.)

Lecture 17
Digital Signatures

Syntax: KeyGen, Sign\(_{SK}\) and Verify\(_{VK}\).

Security: Same experiment as MAC's, but adversary given VK

\[\text{Advantage} = \Pr[\text{Ver}_{VK}(M,s)=1 \text{ and } (M,s) \notin \{(M_i,s_i)\}] \]

Weaker variant: \(\text{Advantage} = \Pr[\text{Ver}_{VK}(M,s)=1 \text{ and } M \notin \{M_i\}] \)
Signatures from OWF

Summary

- One-time, fixed-length message signatures (Lamport)
- Domain-Extension → arbitrary length messages (using UOWHF)
- "Certificate Tree" → many-time signatures (using PRF)

So, in principle, full-fledged digital signatures can be entirely based on OWF.

Not very efficient: Say hashes are $O(k)$ bits long. Then, a signature contains $O(k)$ VKs of Lamport signature, each of which, to allow signing $O(k)$ bit messages, is $O(k^2)$ bits long.

Today: More efficient schemes
Hash and Invert

Diffie-Hellman suggestion (heuristic): $\text{Sign}(M) = f^{-1}(M)$ where $(SK, VK) = (f^{-1}, f)$, a Trapdoor OWP pair. $\text{Verify}(M, \sigma) = 1$ iff $f(\sigma) = M$.

Attack: pick σ, let $M = f(\sigma)$ (Existential forgery)

Fix, using a “hash”: $\text{Sign}(M) = f^{-1}(\text{Hash}(M))$

Secure in the random oracle model

Hash can handle variable length inputs

RSA-PSS in RSA Standard PKCS#1 is based on this
Proving Security in the RO Model

To prove: If Trapdoor OWP secure, then \(\text{Sign}(M) = f^{-1}(\text{Hash}(M)) \) is a secure digital signature, when Hash is modelled as a random oracle.

Hope: Since adversary can’t invert Hash, needs to compute \(f^{-1} \)

Problem: Signing oracle gives adversary access to the \(f^{-1} \) oracle. But then, trapdoor OWP gives no guarantees!

But adversary only sees \((x, f^{-1}(x)) \) where \(x = \text{Hash}(M) \) is random. This can be arranged by picking \(f^{-1}(x) \) first and fixing \(\text{Hash}(M) \) afterwards!

Modeling as an RO: RO randomly initialized to a random function \(H \) from \(\{0,1\}^* \) to \(\{0,1\}^k \)

Signer and verifier (and forger) get oracle access to \(H(.) \)

All probabilities also over the initialization of the RO.
Proving Security in ROM

Reduction: If \(A \) forges signature (where \(\text{Sign}(M) = f^{-1}(H(M)) \) with \((f, f^{-1})\) from Trapdoor OWP and \(H \) an RO), then \(A^* \) that can break Trapdoor OWP (i.e., given just \(f \) and a random challenge \(z \), can find \(f^{-1}(z) \) w.n.n.p). \(A^*(f, z) \) runs \(A \) internally.

\(A \) expects \(f \), access to the RO and a signing oracle \(f^{-1}(\text{Hash}(.)) \) and outputs \((M, \sigma)\) as forgery

\(A^* \) can implement RO: a random response to each new query!

\(A^* \) gets \(f \), but doesn’t have \(f^{-1} \) to sign

But \(x = H(M) \) is a random value that \(A^* \) can pick!

\(A^* \) picks \(H(M) \) as \(x = f(y) \) for random \(y \); then \(\text{Sign}(M) = f^{-1}(x) = y \)
Proving Security in ROM

- A^* s.t. if A forges signature, then A^* can break Trapdoor OWP

- A^* implements H and Sign: For each new M queried to H (including by Sign), A^* sets $H(M) = f(y)$ for random y; $\text{Sign}(M) = y$

- But A^* should force A to invert z

- For a random (new) query M (say t^{th}) A^* sets $H(M) = z$

 - Here queries include the “last query” to H, i.e., the one for verifying the forgery (which may or may not be a new query)

- Given a bound q on the number of queries that A makes to Sign/H, with probability $1/q$, A^* would have set $H(M) = z$, where M is the message in the forgery

- In that case forgery $\Rightarrow \sigma = f^{-1}(z)$
Schnorr Signature

- Public parameters: \((G, g)\) where \(G\) is a prime-order group and \(g\) a generator, for which DLA holds, and a random oracle \(H\)
 - Or \((G, g)\) can be picked as part of key generation

- Signing Key: \(y \in \mathbb{Z}_q\) where \(G\) is of order \(q\). Verification Key: \(Y = g^y\)

- Sign\(_Y\)(\(M\)) = \((x, s)\) where \(x = H(M||g^r)\) and \(s = r - xy\), for a random \(r\)

- Verify\(_Y\)(\(M, (x, s)\)): Compute \(R = g^s \cdot Y^x\) and check \(x = H(M||R)\)

- Secure in the Random Oracle Model under the Discrete Log Assumption for a group
 - Alternately, under a heuristic model for the group (called the Generic Group Model), but under standard-model assumptions on the hash function
Cramer-Shoup Signature

Based on “Strong RSA assumption.” Here, a variant by Damgård-Koprowski based on “Strong Root Assumption.”

For all PPT adversaries A, following probability is negligible:

- **Root Assumption:** \[\text{Pr}_{G,X,e}[A(e,X) = T, T^e = X] \] \((G,X,e) \text{ appropriately distributed}\)
- **Strong Root Assumption:** \[\text{Pr}_{G,X}[A(X) = (X,e), e>1, T^e = X] \]

Important that the order of \(G\) is unpredictable

In fact, \(|G|\) yields \(d = 1/e \mod |G|\) s.t. with \(T = X^d\), we have \(T^e = X\).

Will use large prime \(e\), to guarantee \(\gcd(e,|G|) = 1\).

KeyGen: \(VK = (H,G,g,X,e)\) and \(SK = (VK,|G|)\) where \(H \leftarrow \text{CRHF}\), \((G,|G|) \leftarrow \text{GroupGen}\), \(g \leftarrow G\), \(X = g^x\), \(e\) prime.

Sign: \((R,s,T)\) s.t. \(R \leftarrow G\), \(s \neq e\) large random prime, \(Z = R^s g^{-H(\text{message})}\), and \(T = (Xg^{H(Z)})^{1/e}\) (where \(1/e \mod |G|\) is computed using \(|G|\))

Verify: Compute \(Z = R^s / g^{H(\text{message})}\). Check \(s \neq e\) large, \(T = (Xg^{H(Z)})^{1/e}\)
Summary

- Digital signatures can be based on OWF + UWOHF + PRF
 - In turn based on OWF (or more efficiently on OWP)
 - More efficiently, can be based on number-theoretic/algebraic assumptions (e.g., Cramer-Shoup signatures based on Strong RSA and CRHF)
- In practice, based on number-theoretic/algebraic assumptions in the random oracle model
 - RSA-PSS, of the form $f^{-1}(\text{Hash}(M))$, where f a Trapdoor OWP
 - DSA and variants, based on Schnorr signature
In PKE, KeyGen produces a random (PK, SK) pair

Can I have a “fancy public-key” (e.g., my name)?

No! Not secure if one can pick any PK and find an SK for it!

But suppose a trusted authority for key generation

Identity-Based Encryption: a key-server (with a master secret-key) that can generate a valid (PK, SK) pair for any PK

Encryption will use the master public-key, and the receiver’s “identity” (i.e., fancy public-key)

In PKE, sender has to retrieve PK for every party it wants to talk to (from a trusted public directory)

In IBE, receiver has to obtain its SK from the authority
VK as ID: An Example Identity-Based Encryption

- Security requirement for IBE (will skip formal statement):
 - Environment/adversary decides the ID of the honest parties
 - Adversary can adaptively request SK for any number of IDs (which are not used for honest parties)
 - “CPA security” for encryption with the ID of honest parties
 - IBE (only CPA-secure) can easily give CCA-secure PKE!
 - Idea: Can’t malleate an IBE ciphertext to change ID

\[\text{PKEnc}_{\text{MPK}}(m) = (\text{id}, C=\text{IBEnc}_{\text{MPK}}(\text{id}; m), \text{sign}_\text{id}(C)) \]

- Security: can’t create a different encryption with same id (signature’s security); can’t malleate using a different id (IBE’s security)

Digital Signature with its public-key used as the ID in IBE