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Alternate Assumptions for PKE

Randomness Extractors



Story So Far
Basic primitives for secure communication: 
 
 
 
 

OWF/OWP sufficient (in principle) for SKE, MAC and Digital 
Signatures


PKE needs more structure (e.g., Trapdoor OWP)


Also, many constructions of Digital Signatures and CRHF 
rely on such structure (and sometimes, the random oracle 
model)
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“Post-Quantum Crypto” 
candidates

PKE Maths

Initially PKE was based on hardness of problems in modular 
arithmetic (RSA/factoring, modular discrete log)


Problems from several other areas, since then


Elliptic curve cryptography (mainstream, currently)


Code-based crypto


Lattice-based crypto


Multivariate Polynomial crypto



Elliptic Curve Crypto
Starting 1985 (by Miller, Koblitz)


Groups where Discrete log (and DDH) is considered much harder 
than in modular arithmetic, and hence much smaller groups can be 
used.


Given a finite field F, one can define a commutative group G ⊆ F2, 
as points (x,y) which lie on an “elliptic curve,” with an appropriately 
defined group operation


Different curves yield different groups


Today, most popular PKE schemes use Diffie-Hellman over elliptic 
curves specified by various standards.


Pro: Significantly faster than the other options!


Con: Which elliptic curves are good?



Code-Based Crypto
Coding theory based, since McEliece crypto system (1978)


A linear code is specified by a matrix G. Message x is encoded 
into a codeword xG. Can easily check if c is a codeword.


Structured linear codes exist for which error correcting 
algorithms can correct sparse errors — i.e., recover x from 
xG+e where the error vector e has a large fraction of 0s


But for a random linear code, this seems hard


Idea: Masquerade structured codes to look random. Secret key 
reveals the original structured code. Encrypt as a codeword 
plus a sparse noise vector.


Not commonly used today, as large key sizes and slow 
computation



Code-Based Crypto
G: a k × n generator matrix for a good code over a GF(2)

S: a random k × k invertible matrix

P: a random n × n permutation matrix

Public Key: H = SGP, private key = (S,G,P)

Encryption: mH+e, where e is a random sparse vector (sparse 
enough to allow error correction for the original code)

Decryption: Let d := cP-1 = mSG+e’, where e’=eP-1 as sparse as e. 
Recover m := Decode(d)·S-1


Not CPA secure! [Why?]


Use [r m] instead of m, r being a random pad


CPA secure under the assumptions that H is pseudorandom 
and “Learning Parity with Noise” is hard for random H

Can check if c-mH is sparse



Lattice-Based Crypto

Lattice: set of (real) vectors obtained by linear combination of 
basis vectors using only integer coefficients


Hard problems related to finding short vectors in the lattice


Original use of lattices: to break a candidate for PKE (called the 
“Knapsack cryptosystem”) by Merkle and Hellman


Constructions: NTRU (1996), Ajtai/Ajtai-Dwork (1996/97), … 


More recent constructions based on Learning With Errors (LWE) 
over Zq which is hard if some lattice problems are


(A, Ax + e) is pseudorandom when e is a “short” noise vector



Lattice-Based Crypto: PKE
NTRU approach: Private key is a “good” basis, and the public 
key is a “bad basis”


Worst basis (one that can be efficiently computed from any 
basis): Hermite Normal Form (HNF) basis


To encrypt a message, encode it (randomized) as a short 
“noise vector” v. Output c = v+u for a random lattice point u 
that is chosen using the public basis


To decrypt, use the good basis to find u as the closest 
lattice vector to c, and recover v = c-u


NTRU Encryption: use lattices with succinct basis


Conjectured to be CPA secure for appropriate lattices. No 
security reduction known to simple lattice problems



An LWE based approach:


Public-key is (A,P) where P=AS+E, for random matrices (of 
appropriate dimensions) A and S, and a noise matrix E over Zq


To encrypt an n bit message, map it to an (“error-correctable”) 
vector v; pick a random “noise vector” a (i.e., small coordinates); 
ciphertext is (u,c) where u = ATa and c = PTa + v


Decryption using S: recover message from c - STu = v + ETa, by 
“error correcting” (error not sparse, but has small entries)


CPA security: By LWE assumption, the public-key is 
indistinguishable from random; and, encryption under truly 
random (A,P) loses essentially all information about the 
message


Coming up: PTa acts as a one-time pad, even given A, P, ATa

Lattice-Based Crypto: PKE
cf. El Gamal: A→g, S→y, P→Y=gy a→x, u→gx, PTa→Yx 



Randomness Extraction



Randomness Extractors
Consider a PRG which outputs a pseudorandom group element in 
some complicated group


A standard bit-string representation of a random group 
element may not be (pseudo)random


Can we efficiently map it to a pseudorandom bit string? 
Depends on the group...


Suppose a chip for producing random bits shows some 
complicated dependencies/biases, but still is highly unpredictable


Can we purify it to extract uniform randomness? Depends on 
the specific dependencies...


A general tool for purifying randomness: Randomness Extractor



Randomness Extractors

Statistical guarantees (output not just pseudorandom, but truly 
random, if input has sufficient entropy)


2-Universal Hash Functions (when sufficiently compressing)


“Optimal” in all parameters except seed length


Constructions with shorter seeds known


e.g. Based on expander graphs



Randomness Extractors
Strong extractor: output is random even when the seed for 
extraction is revealed


2-UHF is in fact a strong extractor (seed is the hash function)


Useful in key agreement


Alice and Bob exchange a non-uniform key, with a lot of 
pseudoentropy for Eve (say, gxy)


Alice sends a random seed for a strong extractor to Bob, in 
the clear


Key derivation: Alice and Bob extract a new key, which is 
pseudorandom (i.e., indistinguishable from a uniform bit string)


In LWE-based PKE

hM(x) = Mx, where M compressing, x≠0, is a 2-UHF [Exercise]

a (even with small entries) has enough entropy given (A, ATa), 
and so PTa almost uniform even given (A, P, ATa)



Randomness Extractors
Pseudorandomness Extractors (a.k.a. computational extractors): 
output is guaranteed only to be pseudorandom if input has 
sufficient (pseudo)entropy


Key Derivation Function: Strong pseudorandomness extractor


Cannot directly use a block-cipher, because pseudorandomness 
required even when the randomly chosen seed is public (“salt”)


Extract-Then-Expand: It’s enough to extract a key for a PRF


Can be based on HMAC or CBC-MAC: Statistical guarantee, if 
compression function/block-cipher were a public but 
randomly chosen function/permutation


Models KDF in IPsec’s Internet Key Exchange (IKE) protocol.  
HMAC version later standardised as HKDF.



Randomness Extractors

Extractors for use in system Random Number Generator 
(think /dev/random)


Additional issues:


Online model, with a variable (and unknown) rate of 
entropy accumulation


Should recover from compromise due to low entropy 
phases


Constructions provably secure in such models known 


Using PRG (e.g., AES in CTR mode), universal hashing and 
“pool scheduling”  (similar to Fortuna, used in Windows)



Coming Up

Secure communication in practice


SSL/TLS


IPSec


BGPSec


DNSSec


