
Wrap Up:
Cryptographic Primitives

Lecture 18

Alternate Assumptions for PKE

Randomness Extractors

Story So Far
Basic primitives for secure communication:

OWF/OWP sufficient (in principle) for SKE, MAC and Digital
Signatures

PKE needs more structure (e.g., Trapdoor OWP)

Also, many constructions of Digital Signatures and CRHF
rely on such structure (and sometimes, the random oracle
model)

Shared-Key Public-Key

Encryption SKE PKE

Authentication MAC Signature

“Post-Quantum Crypto”
candidates

PKE Maths

Initially PKE was based on hardness of problems in modular
arithmetic (RSA/factoring, modular discrete log)

Problems from several other areas, since then

Elliptic curve cryptography (mainstream, currently)

Code-based crypto

Lattice-based crypto

Multivariate Polynomial crypto

Elliptic Curve Crypto
Starting 1985 (by Miller, Koblitz)

Groups where Discrete log (and DDH) is considered much harder
than in modular arithmetic, and hence much smaller groups can be
used.

Given a finite field F, one can define a commutative group G ⊆ F2,
as points (x,y) which lie on an “elliptic curve,” with an appropriately
defined group operation

Different curves yield different groups

Today, most popular PKE schemes use Diffie-Hellman over elliptic
curves specified by various standards.

Pro: Significantly faster than the other options!

Con: Which elliptic curves are good?

Code-Based Crypto
Coding theory based, since McEliece crypto system (1978)

A linear code is specified by a matrix G. Message x is encoded
into a codeword xG. Can easily check if c is a codeword.

Structured linear codes exist for which error correcting
algorithms can correct sparse errors — i.e., recover x from
xG+e where the error vector e has a large fraction of 0s

But for a random linear code, this seems hard

Idea: Masquerade structured codes to look random. Secret key
reveals the original structured code. Encrypt as a codeword
plus a sparse noise vector.

Not commonly used today, as large key sizes and slow
computation

Code-Based Crypto
G: a k × n generator matrix for a good code over a GF(2)

S: a random k × k invertible matrix

P: a random n × n permutation matrix

Public Key: H = SGP, private key = (S,G,P)

Encryption: mH+e, where e is a random sparse vector (sparse
enough to allow error correction for the original code)

Decryption: Let d := cP-1 = mSG+e’, where e’=eP-1 as sparse as e.
Recover m := Decode(d)·S-1

Not CPA secure! [Why?]

Use [r m] instead of m, r being a random pad

CPA secure under the assumptions that H is pseudorandom
and “Learning Parity with Noise” is hard for random H

Can check if c-mH is sparse

Lattice-Based Crypto

Lattice: set of (real) vectors obtained by linear combination of
basis vectors using only integer coefficients

Hard problems related to finding short vectors in the lattice

Original use of lattices: to break a candidate for PKE (called the
“Knapsack cryptosystem”) by Merkle and Hellman

Constructions: NTRU (1996), Ajtai/Ajtai-Dwork (1996/97), …

More recent constructions based on Learning With Errors (LWE)
over Zq which is hard if some lattice problems are

(A, Ax + e) is pseudorandom when e is a “short” noise vector

Lattice-Based Crypto: PKE
NTRU approach: Private key is a “good” basis, and the public
key is a “bad basis”

Worst basis (one that can be efficiently computed from any
basis): Hermite Normal Form (HNF) basis

To encrypt a message, encode it (randomized) as a short
“noise vector” v. Output c = v+u for a random lattice point u
that is chosen using the public basis

To decrypt, use the good basis to find u as the closest
lattice vector to c, and recover v = c-u

NTRU Encryption: use lattices with succinct basis

Conjectured to be CPA secure for appropriate lattices. No
security reduction known to simple lattice problems

An LWE based approach:

Public-key is (A,P) where P=AS+E, for random matrices (of
appropriate dimensions) A and S, and a noise matrix E over Zq

To encrypt an n bit message, map it to an (“error-correctable”)
vector v; pick a random “noise vector” a (i.e., small coordinates);
ciphertext is (u,c) where u = ATa and c = PTa + v

Decryption using S: recover message from c - STu = v + ETa, by
“error correcting” (error not sparse, but has small entries)

CPA security: By LWE assumption, the public-key is
indistinguishable from random; and, encryption under truly
random (A,P) loses essentially all information about the
message

Coming up: PTa acts as a one-time pad, even given A, P, ATa

Lattice-Based Crypto: PKE
cf. El Gamal: A→g, S→y, P→Y=gy a→x, u→gx, PTa→Yx

Randomness Extraction

Randomness Extractors
Consider a PRG which outputs a pseudorandom group element in
some complicated group

A standard bit-string representation of a random group
element may not be (pseudo)random

Can we efficiently map it to a pseudorandom bit string?
Depends on the group...

Suppose a chip for producing random bits shows some
complicated dependencies/biases, but still is highly unpredictable

Can we purify it to extract uniform randomness? Depends on
the specific dependencies...

A general tool for purifying randomness: Randomness Extractor

Randomness Extractors

Statistical guarantees (output not just pseudorandom, but truly
random, if input has sufficient entropy)

2-Universal Hash Functions (when sufficiently compressing)

“Optimal” in all parameters except seed length

Constructions with shorter seeds known

e.g. Based on expander graphs

Randomness Extractors
Strong extractor: output is random even when the seed for
extraction is revealed

2-UHF is in fact a strong extractor (seed is the hash function)

Useful in key agreement

Alice and Bob exchange a non-uniform key, with a lot of
pseudoentropy for Eve (say, gxy)

Alice sends a random seed for a strong extractor to Bob, in
the clear

Key derivation: Alice and Bob extract a new key, which is
pseudorandom (i.e., indistinguishable from a uniform bit string)

In LWE-based PKE

hM(x) = Mx, where M compressing, x≠0, is a 2-UHF [Exercise]

a (even with small entries) has enough entropy given (A, ATa),
and so PTa almost uniform even given (A, P, ATa)

Randomness Extractors
Pseudorandomness Extractors (a.k.a. computational extractors):
output is guaranteed only to be pseudorandom if input has
sufficient (pseudo)entropy

Key Derivation Function: Strong pseudorandomness extractor

Cannot directly use a block-cipher, because pseudorandomness
required even when the randomly chosen seed is public (“salt”)

Extract-Then-Expand: It’s enough to extract a key for a PRF

Can be based on HMAC or CBC-MAC: Statistical guarantee, if
compression function/block-cipher were a public but
randomly chosen function/permutation

Models KDF in IPsec’s Internet Key Exchange (IKE) protocol.
HMAC version later standardised as HKDF.

Randomness Extractors

Extractors for use in system Random Number Generator
(think /dev/random)

Additional issues:

Online model, with a variable (and unknown) rate of
entropy accumulation

Should recover from compromise due to low entropy
phases

Constructions provably secure in such models known

Using PRG (e.g., AES in CTR mode), universal hashing and
“pool scheduling” (similar to Fortuna, used in Windows)

Coming Up

Secure communication in practice

SSL/TLS

IPSec

BGPSec

DNSSec

