Communication Protocols

Lecture 19

TLS

We saw...

@ Symmetric-Key Components
@ SKE, MAC

@ Public-Key Components
@ PKE, Digital Signatures

@ Building blocks: Block-ciphers (AES), Hash-functions (SHA-3),
Trapdoor PRG/OWP for PKE (e.qg., DDH, RSA) and
Random Oracle heuristics (in RSA-OAEP, RSA-PSS)

@ Symmetric-Key primitives much faster than Public-Key ones

@ Hybrid Encryption gets best of both worlds

Secure Communication in
Practice

@ Can do at different levels of the “network stack”

@ e.q., application layer”, “transportation layer” or “network
layer”

@ Protocol standards in all cases
@ To be interoperable
@ To not insert bugs by doing crypto engineering oneself
® e.g.: SSL/TLS (used in https), IPSec (in the "network layer®)

@ Allows implementation in libraries or within OS kernels

Security Architectures
(An example)

Security architecture (client perspective)

Semice Provde

Appication Applcation Application Application Application

Web Services Sdcurity
SOAP sonp SOAP

HTTP M_?.I HTTP Autherpication

HTTP HTTP

SSL(7) SSL(?)
o >

TLS/SSL

TCP

P

MAC MAC

SSL Senvice
Endpoirt

SSL processor or
HTTP proxy

might swiich o

SEL (see notes)

From the IBM WebSphere Developer Technical Journal

Secure Communication
Infrastructure

@ Goal: a way for Alice and Bob to setup a private and authenticated
communication channel (can give a detailed SIM-definition)

@ Simplest idea: Use a (SIM-CCA secure) public-key encryption
(possibly a hybrid encryption) to send signed (using an existentially
unforgeable signature scheme) messages (with sequence numbers
and channel id)

@ Limitation: Alice, Bob need to know each others public-keys

@ Also, room for efficiency improvements if Alice and Bob engage
in “sessions”
@ Can maintain state (keys, counters) throughout the session
@ If fresh PKE key in each authenticated session, only CPA
security needed

Secure Communication
Infrastructure

@ Secure Communication Sessions

(Authenticated)

@ Handshake protocol: establish private shared keys< Key-Exchange

@ Record protocol: use efficient symmetric-key schemes

@ Server-to-server communication: Both parties have (certified)

public-keys

@ Client-server communication: server has (certified) public-keys

@ Client "knows” server. Server willing to talk to all clients

@ Client-Client communication (e.g., email)
Clients share public-keys in ad hoc
ways

/\

Server may “know” (some) clients
too, using passwords, pre-shared
keys, or if they have (certified)
public-keys. Often implemented in
application-layer

Certificate Authorities

@ How does a client know a servers public-key?

@ Based on what is received during a first session? (e.g., first
ssh connection to a server)

® Better idea: Chain of trust

@ Client knows a certifying authority’s public key (for signature)

¢ symantec| {762 Daddy

Google Trust Services

Certificate Authorities

@ How does a client know a servers public-key?

@ Based on what is received during a first session? (e.g., first
ssh connection to a server)

® Better idea: Chain of trust

@ Client knows a certifying authority’s public key (for signature)

® Bundled with the software/hardware
@ Certifying Authority signs the signature PK of the server

® CA is assumed to have verified that the PK was generated
by the “correct” server before signing

@& Validation standards: Domain/Extended validation

Forward Secrecy

@ Servers have long term public keys that are certified

@ Would be enough to have long term signature keys, but in
practice sometimes long tferm decryption keys too

@ Problem: if the long term decryption key is leaked, old
communications are also revealed

@ Adversary may have already stored, or even actively
participated in old sessions

@ Solution: Do a fresh secure key-exchange for each session
(authenticated using signatures)

@ TLS 1.3 removes support for static keys (except for
externally prepared Pre-Shared Keys)

Authenticated Encryption

MAC-then-encrypt]

» , : : ! is not necessarily
@ Doing encryption + authentication efficiently CCA-secure

@ Generic composition (encrypt, then MAC) needs two keys and
two passes

@ Authenticated Encryption (AE) aims to do this more efficiently
(one single module, which can be optimised together)

@ Several constructions based on block-ciphers (modes of
operation) provably secure modeling block-cipher as PRP

@ One pass: IAPM, OCB, ... [patented]
@ Two pass: CCM, GCM, AES-SIYV, ... [in NIST standards]

@ AE with Associated Data (AEAD): Allows unencrypted (but
authenticated) parts of the plaintext, for headers etc.

@ Used as the basic symmeitric key primitive in TLS 1.3

Authenticated Encryption
GCM

@ Galois/Counter Mode: Encrypt using a block-cipher in counter
mode, and authenticate the ciphertext using a MAC based on
operations in a "Galois field”

® GHASH: uses arithmetic in a finite field where field elements
are 128-bit blocks, addition is bit-wise XOR, and
multiplication is quite fast (compared to block-ciphers)

@ Treat an (arbitrarily long) message m as the coefficients

of a polynomial M, and evaluate M(K), where K, the key,
is a random field element

@ An approximate universal hash function: Given M(K), M'(K)
is still almost uniform (degrades with message length)

® GCM: (r,C,T) where C = Fk(r+l)em, T = Fk(r) ® GHASH«(C)

Authenticated Encryption

GCM-SIV

@ Synthetic IV: To provide security against “nonce reuse”

@ Recall SKE (r, Fk(r)®m) where F is a PRF (with extended
output). The "IV” r should be “fresh”.

@ Instead of picking r = nonce, let r = Fk(nonce®Hx'(m)), where
H is (say) GHASH

@ If nonce is fixed deterministically, a deterministic scheme,
and hence not CPA secure. But secure upto revealing
message repetition pattern.

@ Letting ciphertext be (nonce, r, Fk(r)®@m) works as an
authenticated encryption

@ (nonce, r) is a MAC tag on m which hides m

A Simple Secure
Communication Scheme

& Handshake Servers PK either trusted (from
s Client sends fresh session keys for MAC 2 Previous session for e.g) or
. certified by a trusted CA, using
and SKE to the server USlng SIM-CCA a Digital Signature scheme
secure PKE, with servers PK (i.e. over
an unauthenticated, but private channel) Does not have
: _ forward secrecy!
@ For authentication only: use MAC Not allowed in TLS 1.3

@ In fact, a "stream-MAC": To send more
than one message, but without allowing
reordering

@ For authenftication + encryption, encrypt-
then-MAC (“stream” versions)

@ Or better, use Authenticated Encryption

A Simple Secure
Communication Scheme

Servers message is authenticated,
® Handshake and can include additional data,

@ Client sends first message of a key encrypted using the newly defined
B + l d d Key. Also, includes a certificate of
e>$c ange protocol and server respo.n S B SO
with the second message. Symmetric

keys derived from the resulting secret. ~ Need fo avoid replay aftacks
(infeasible for server to explicitly

@ For authentication only: use MAC checkiforgreplayed cipherfexts)

@ In fact a “stream-MAC”: To send more Recall “inefficient” domain-

than one message, but without allowing &xfension of MAC: Add a
sequence number (and a

reorderlng session-specific nonce) to each

_an : message before MAC'ing
@ For authentication + encryption, encrypt-

then-MAC (\Sfream - versions) MAC serves dual purposes of

y) CCA security and authentication
@ Or better, use Authenticated Encryption

Negotiations on protocol version,
“cipher suites” for SKE (block-ciphers

TL S (S S L) & hash), PKE & signature algorithms.

e.g. cipher-suite: RSA-OAEP for key-
exchange, AES for SKE,
HMAC-SHA?256 for MAC
(In TLS 1.3, Auth. Enc.)

® Handshake
TLS 1.2 allows server to send a

@ Client sends first message of a key certified PKE public-key (RSA), which
exchange protocol and server responds the client uses fo send a pre-key”K.

: . Server also “contributes” to key-

with the second message. Symmetric generation (fo avoid replay attack

Keys derived from the resu[ﬂng secret. issues): a master key generated as
PRFk(x,y) where x from client and v

@ For authentication only: use MAC fromiserver. SKE and MAC keys
derived from master key

@ In fact, a “stream-MAC”: To send more (TLS 1.3 allows only Diffie-Hellman
key-exchange followed by HKDF)

than one message, but without allowing
TLS 1.2 uses MAC-then-encrypt! Not

reordermg CCA secure in general, but secure
! ! : with stream-cipher (and CBC mode).
@ For authentication + encryption, encrypt- TLS 1.3 uses AEAD.

then-MAC (“stream” versions)

Several details on closing sessions,
session caching, resuming sessions,

@ Or better, use Authenticated Encryption .
using pre-shared keys ...

TLS: Some Considerations

@ Overall security goal: Authenticated and Confidential Channel
Establishment (ACCE), or Server-only ACCE

@ Handshake Protocol
@ Cipher suites are negotiated, not fixed — "Downgrade attacks”

® Doesnt use CCA secure PKE, but is overall CCA secure if error in
decryption “never revealed” (tricky to ensure!)

@ Record Protocol
@ Using MAC-then-Encrypt (as in TLS 1.2) is tricky:

@ CCA-secure when using SKE implemented using a stream
cipher (or block-cipher in CTR mode) or CBC-MAC

@ But insecure if more information revealed on decryption fails

@ e.g., different times taken by MAC check (or different error
messages!) when a format error in decrypted message

@ TLS 1.3 uses easier to analyse protocols

‘é‘

TLS: Some Considerations

Numerous vulnerabilities keep surfacing

FREAK, DROWN, POODLE, Heartbleed, Logjam, ...
And numerous unnamed ones: www.openssl.org/news/vulnerabilities.html
Listed as part of Common Vulnerabilities and Exposures (CVE) list: cve.mitre.org/

Bugs in protfocols
@ Often in complex mechanisms created for efficiency

@ Often facilitated by the existence of weakened “export grade”
encryption and improved computational resources

@ Also because of weaker legacy encryption schemes (e.g.
Encryption from RSA PKCS#1 v1.5 — known to be not CCA
secure and replaced in 1998 — is still used in TLS)

Bugs in implementations
Side-channels that are not originally considered

Back-Doors (?) in the primitives used in the standards

http://www.openssl.org/news/vulnerabilities.html
http://cve.mitre.org/

TLS: Some Considerations

@ Numerous vulnerabilities keep surfacing

FREAK, DROWN, POODLE, Heartbleed, Logjam, ...
And numerous unnamed ones: www.openssl.org/news/vulnerabilities.html
Listed as part of Common Vulnerabilities and Exposures (CVE) list: cve.mitre.org/

@

"

cnceryprion rrom RSA PKCS#1 vl.5 — Known 1o be noi CCh
secure and replaced in 1998 — is still used in TLS)

@ Bugs in implementations
@ Side-channels that are not originally considered

@ Back-Doors (?) in the primitives used in the standards

http://www.openssl.org/news/vulnerabilities.html
http://cve.mitre.org/

